
Breaking Data Silos:

Multi-Source Average Treatment Effect Estimation beyond

Meta-Analysis
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Federated causal inference

Goal of causal inference: measure the effect of a treatment on an outcome

Randomized Controlled Trials (RCTs):

Treated Control

+ : direct causal association

− : limited scope (eligibility criteria), small

sample sizes, not always feasible

Observational Data:
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Federated causal inference

Multi-source causal inference: higher validity and generalization

Randomized Controlled Trials (RCTs):

Study A

Study B Study C

+ : direct causal association

− : limited scope (eligibility criteria), small

sample sizes, not always feasible

Observational Data:

Hospital A

Hospital B Hospital C

+ : abundant, large scope, always available

− : naturally scattered across sites (e.g.,

hospitals), confounding factors 1



Classic approach: Meta-analysis

Meta-analysis (MA) combines effects from multiple studies

It is at the top of the evidence hierarchy
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Classic approach: Meta-analysis

Meta-analysis (MA) combines effects from multiple studies on:

Table 1 Table 2 Table 3

aggregation

+ + +

Aggregated Data (AD):

• Studies report summary statistics + effect

sizes which are aggregated into a single one.

• Limitation: Prone to ecological bias.

Table 1 Table 2 Table 3

Pooled Table

data centralisation

Individual Patient Data (IPD):

• Studies’ data are pooled together before

causal analysis.

• Limitation: Harder to share individual data
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Enabling individual patient data analysis with federated learning

IPD cannot always be pooled

altogether

data center

• Data may be too sensitive to share:

personal data regulations (GDPR,

HIPAA...), no consent and release

agreement during data collection

• Parties may have competitive

concerns (e.g., pharmaceutical

companies performing costly RCTs)

Federated Learning enables IPD analysis without pooling

• Client-server architecture enabling collaborative learning

without sharing individual data

• Recent framework with strong theoretical guarantees

[Kairouz et al., 2021]

• Encompasses privacy (e.g., differential privacy) and

security concerns (e.g., adversarial attacks)
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Going beyond meta-analysis with federated causal inference

Our work bridges causal inference and federated learning [Kairouz et al., 2021] to better

estimate average treatment effects from decentralized data sources

1. We consider several estimators with varying communication costs

2. We study their statistical performance under various types of data heterogeneity

3. We validate on numerical experiments and provide guidelines for practitioners

Multiple RCTs1: compares meta-analysis, one-shot and multi-shot FL

Multiple sites with observational data2: focuses on the federation of heterogeneous

propensity scores to estimate the ATE

1R.K., A. Bellet, and J. Josse. ”Federated Causal Inference: Multi-Centric ATE Estimation beyond

Meta-Analysis.” AISTATS (2024).
2R.K., A. Bellet, and J. Josse. ”Federated Causal Inference from Multi-Site Observational Data via

Propensity Score Aggregation.” Arxiv (2025).
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Related work in Federated Causal Inference

• Multicentric framework: IPD meta-analysis offers clear advantages over AD, especially

when local datasets are small34

• Federation of model parameters: outcome and propensity score models can be

federated, but it is unclear how the subsequent ATE estimators compare to meta-analysis

on AD.

• Generalization: transferring ATE estimates from multiple source sites to a target domain

can be done with density ratio weighting method. Their approach resembles

meta-analysis, relying on aggregate statistics rather than individual-level data

3Riley, Richard D., et al. ”Two-stage or not two-stage? That is the question for IPD meta-analysis projects.”

Research synthesis methods 14.6 (2023)
4Robertson, Sarah E., et al. ”Center-specific causal inference with multicenter trials: reinterpreting trial

evidence in the context of each participating center.” arXiv (2021)

5



Related work in Federated Causal Inference

• Multicentric framework: IPD meta-analysis offers clear advantages over AD, especially

when local datasets are small

• Federation of model parameters: outcome and propensity score models can be

federated34, but it is unclear how the subsequent ATE estimators compare to

meta-analysis on AD.

• Generalization: transferring ATE estimates from multiple source sites to a target domain

can be done with density ratio weighting method. Their approach resembles

meta-analysis, relying on aggregate statistics rather than individual-level data

3Xiong, Ruoxuan, et al. ”Federated causal inference in heterogeneous observational data.” Statistics in

Medicine (2023)
4Vo, Thanh Vinh, and Tze-Yun Leong. ”Federated Causal Inference from Observational Data.” arXiv (2023)

5



Related work in Federated Causal Inference

• Multicentric framework: IPD meta-analysis offers clear advantages over AD, especially

when local datasets are small

• Federation of model parameters: outcome and propensity score models can be

federated, but it is unclear how the subsequent ATE estimators compare to meta-analysis

on AD.

• Generalization: transferring ATE estimates from multiple source sites to a target domain

can be done with density ratio weighting method3. Their approach resembles

meta-analysis, relying on aggregate statistics rather than individual-level data

3Han, Larry, et al. ”Federated adaptive causal estimation (face) of target treatment effects.” Journal of the

American Statistical Association (2025)

5



Multiple RCTs



Reminder: classic RCT framework

• Estimate effect of treatment W on outcome Y given covariates X , with Wi ∼ B(p)

• Average Treatment Effect (ATE) measured as a risk difference τ = E[Yi (1)− Yi (0)]

Obs. Covariates Treatment Outcome Potential Outcomes

i X1 X2 X3 W Y Y (1) Y (0)

1 2.3 1.5 M 1 3.2 3.2 ??

2 2.2 3.1 F 0 2.8 ?? 2.8

3 3.5 2.0 F 1 2.1 2.1 ??

...
...

...
...

...
...

...
...

n − 1 3.7 2.0 F 0 2.8 ?? 2.8

n 2.5 1.7 M 1 3.2 3.2 ??
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Our setting: decentralized heterogeneous RCTs

• We consider K decentralized and potentially heterogeneous RCTs (studies) from different

sources and want to estimate the ATE given by τ = E
(
E(Y (1) − Y (0) | H)

)
Source Obs. Covariates Treatment Outcomes

H i X1 X2 X3 W Y

1 1 2.3 1.5 M 1 3.2

1 2 2.2 3.1 F 0 2.8

...
...

...
...

...
...

...

2 1 4.5 5.0 F 1 4.1

...
...

...
...

...
...

...

K 1 3.7 2.0 F 0 2.8

...
...

...
...

...
...

...

K nK 2.5 1.7 M 0 3.2

hehr

in

W

X

Y

H

How to estimate τ without pooling together individual-level data?
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Model and assumptions

• For now, same linear outcome model for all studies:

∀k : Y
(w)
k,i = c(w) + Xk,iβ

(w) + ε
(w)
k,i , with E

[
X⊤
k ε

(w)
k,i

]
= 0,V

(
ε
(w)
k,i | Xk

)
= σ2

• Standard assumptions (consistency, positivity, unconfoundedness)

• We aim to estimate the ATE τ = E[Y (1) − Y (1)] = E[X ′]
(
θ(1) − θ(0)

)
.

• Ideal baseline: estimator τ̂pool =
1
n

∑n
i=1 X

′
i (θ̂

(1)
pool − θ̂

(0)
pool) on pooled data, where

θ̂
(w)
pool = (ĉ

(w)
pool, β̂

(w)
pool) =

(
X ′(w)⊤

X ′(w))−1
X ′(w)⊤

Y (w) is the OLS estimator and X ′(w)
= [1,X (w)]

• τ̂pool always has lower variance than the simple difference-in-means estimator

[Benkeser et al., 2021, Lei and Ding, 2021]

8



Model and assumptions

• For now, same linear outcome model for all studies:

∀k : Y
(w)
k,i = c(w) + Xk,iβ

(w) + ε
(w)
k,i , with E

[
X⊤
k ε

(w)
k,i

]
= 0,V

(
ε
(w)
k,i | Xk

)
= σ2

• Standard assumptions (consistency, positivity, unconfoundedness)

• We aim to estimate the ATE τ = E[Y (1) − Y (1)] = E[X ′]
(
θ(1) − θ(0)

)
.

• Ideal baseline: estimator τ̂pool =
1
n

∑n
i=1 X

′
i (θ̂

(1)
pool − θ̂

(0)
pool) on pooled data, where

θ̂
(w)
pool = (ĉ
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(w)
pool, β̂

(w)
pool) =

(
X ′(w)⊤

X ′(w))−1
X ′(w)⊤

Y (w) is the OLS estimator and X ′(w)
= [1,X (w)]

• τ̂pool always has lower variance than the simple difference-in-means estimator

[Benkeser et al., 2021, Lei and Ding, 2021]

8



Model and assumptions

• For now, same linear outcome model for all studies:

∀k : Y
(w)
k,i = c(w) + Xk,iβ

(w) + ε
(w)
k,i , with E

[
X⊤
k ε

(w)
k,i

]
= 0,V

(
ε
(w)
k,i | Xk

)
= σ2

• Standard assumptions (consistency, positivity, unconfoundedness)

• We aim to estimate the ATE τ = E[Y (1) − Y (1)] = E[X ′]
(
θ(1) − θ(0)

)
.

• Ideal baseline: estimator τ̂pool =
1
n

∑n
i=1 X

′
i (θ̂

(1)
pool − θ̂

(0)
pool) on pooled data, where

θ̂
(w)
pool = (ĉ
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Federated Estimators



Three types of federated estimators

Meta analysis

• Meta and one-shot require local sample size n
(w)
k ≥ d for k,w

• Aggregation: sample size weights (SW) or inverse variance weights (IVW)

9
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A baseline FL algorithm: FedAvg

Algorithm FedAvg (server-side)

initialize global model parameters θ0
for each round t = 1 to T do

for each client k ∈ K in parallel do

θk ← ClientUpdate(k , θ)

θ ←
∑

k∈K
nk
n θk // FedAvg

Algorithm ClientUpdate(k, θ)

θ(k) ← θ

for local step e = 1 to E do

Bk ← mini-batch of B samples from Dk

compute ∇θL(θ(k);Bk)
update θ(k) ← θ(k) − η∇θL(θ(k);Bk)

return θ(k) to server
10



A baseline FL algorithm: FedAvg

initialize model

Algorithm FedAvg (server-side)

initialize global model parameters θ0
for each round t = 1 to T do

for each client k ∈ K in parallel do

θk ← ClientUpdate(k , θ)

θ ←
∑

k∈K
nk
n θk // FedAvg

Algorithm ClientUpdate(k, θ)

θ(k) ← θ

for local step e = 1 to E do

Bk ← mini-batch of B samples from Dk

compute ∇θL(θ(k);Bk)
update θ(k) ← θ(k) − η∇θL(θ(k);Bk)

return θ(k) to server
10



A baseline FL algorithm: FedAvg

each party makes an update
using its local dataset
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A baseline FL algorithm: FedAvg

parties share local
updates for aggregation
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A baseline FL algorithm: FedAvg

server aggregates updates
and sends back to parties
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A baseline FL algorithm: FedAvg

parties update their copy
of the model and iterate
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A baseline FL algorithm: FedAvg

• T comm. rounds: larger improves

accuracy but increases comm. cost. Typically

100− 1000 for deep learning models.

• E local updates: larger improves local

convergence but can cause drift in

heterogeneous settings. 1− 5 works well.

• η learning rate: typically 0.01− 0.1 for

logistic regression, 0.001− 0.01 for deep

learning models.
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Federated Averaging (FedAvg) for Linear Regression

Linear Regression

• Y = Xβ + ε. Estimate β by minimizing the MSE:

argminβ ℓ(β;Xi ,Yi ) with ℓ(β;Xi ,Yi ) =
1

n

n∑
i=1

(Yi − Xiβ)
2

Gradient Descent (GD)

1. Initialize β0 with zeros

2. Update βt+1 := βt − η∇ℓ(βt) with ∇ℓ(βt) = − 2
n

∑n
i=1 X

T
i (Yi − Xiβ)

3. Repeat for E steps until convergence

Choices: learning rate η & E to get β̂GD ≈ β̂OLS with equality as E →∞.

Choose η < 2
λmax

where λmax is the highest eigenvalue of XTX .

11



Federated Averaging (FedAvg) for Linear Regression

FedAvg Objective

• Y = Xβ + ε. Estimate β̂FedAvg by minimizing:

argminβ

K∑
k=1

nk
n
ℓk(β) with ℓk(β) =

1

nk

nk∑
i=1

(Y k
i − X k

i β)
2

Federated Learning extends GD to a distributed setting

1. Initialize β0 on central server with zeros (globally shared)

2. For each communication round t = 1, . . . ,T :

• Each site k = 1, . . . ,K performs E gradient steps on its data:

βk
t+1 = βk

t − η∇ℓk(β
k
t ) where ∇ℓk(β

k
t ) = − 2

nk

∑nk
i=1 X

k,T
i (Y k

i − X k
i β

k
t )

• Parameters are sent to the server for aggregation: βt+1 =
∑K

k=1
nk
n
βk
t+1

Choices: learning rate η, communication T & L.

T = 1 & L→∞: One-shot federated learning, meta analysis on β. 11



Homogeneous setting

W

X

YH

• The source membership variable H only affects the treatment allocation scheme

• Let Wk,i ∼ B(pk)

12



Summary of results

Estimators are unbiased but differ by their asymptotic variance and communication costs:

Estimator Notation V∞ Com. rounds Com. cost

Meta-SW τ̂Meta-SW
σ2

n

K∑
k=1

ρk

pk (1 − pk )
+

1

n
∥β(1)−β

(0)∥2
Σ 1 O(1)

Meta-IVW τ̂Meta-IVW

( K∑
k=1

(
σ
2 nρk

pk (1 − pk )
+

1

nk
∥β(1)−β

(0)∥2
Σ

)−1
)−1

1 O(1)

1S-SW τ̂1S-SW Vpool 2 O(d)

1S-IVW τ̂1S-IVW Vpool 2 O(d2)

GD τ̂GD Vpool T + 1 O(Td)

Pool τ̂pool Vpool =
σ2

n
1

p(1−p)
+ 1

n
∥β(1) − β(0)∥2Σ — —

with ρk = P(H = k) = E
[
nk
n

]
and p =

∑K
k=1

nk
n pk

13
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Numerical illustration (K = 5 and d = 10)

More data (nk = 100d)

Less data (nk = 5d)
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Heterogeneity in covariates distributions

W

X

Y

H

• Distributional shift across sources: H ̸⊥⊥ X =⇒ τk ̸= τk′

• Global ATE is given by τ =
∑K

k=1 ρkτk with ρk = P(H = k) = E
[
nk
n

]

15



Numerical illustration

Xk ∼ N (µk ,Σk)
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Heterogeneity from Center Effects

W

X

Y

H

• Studies may have different baselines in individual outcomes due to varying practices or

organizational contexts (e.g. hospital specialized in oncology)

• We model this by a fixed effect of the source H onto the outcome Y :

Y
(w)
k,i = c(w) + hk + Xk,iβ

(w) + εi (w)

(Note: the CATEs E[Y (1)− Y (0)|X ,H] remain the same across sources)

• Caution: H is now a confounder!
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Numerical illustration
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Numerical illustration

More data (nk = 100d) Less data (nk = 5d)

1S-SWPool Meta-SW GD1S-IVWMeta-IVW Adjusted True tau
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Summary: decision diagram for practitioners
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Multiple Observational Studies



Classic framework with observational data

• Goal: estimate effect of treatment W on outcome Y given covariates X

• Observational setting: W ̸⊥⊥ X , treatment allocation based on patient covariates

• X is a confounder: need to account for either P(Wi = 1 | Xi ) or E(Yi |Wi ,Xi )

Obs. Covariates Treatment Outcome Potential Outcomes

i X1 X2 X3 W Y Y (1) Y (0)

1 2.3 1.5 M 1 3.2 3.2 ??

2 2.2 3.1 F 0 2.8 ?? 2.8

3 3.5 2.0 F 1 2.1 2.1 ??

...
...

...
...

...
...

...
...

n − 1 3.7 2.0 F 0 2.8 ?? 2.8

n 2.5 1.7 M 1 3.2 3.2 ??

W

X

Y

20



Classic (oracle) centralized ATE estimators

• Denote e(x) = P(W = 1 | X = x) (propensity score) and µw (x) = E(Y |W = w ,X = x)

Inverse Propensity Weighting (IPW):

τ̂∗IPW =
1

n

n∑
i=1

(
WiYi − (1−Wi )Yi

)

Augmented IPW (AIPW):

τ̂∗AIPW =
1

n

n∑
i=1

(Wi (Yi − µ1(Xi ))

e(Xi )
− (1−Wi ) (Yi − µ0(Xi ))

1− e(Xi )

+ µ1(Xi )− µ0(Xi )
)

which is doubly robust

Assumptions for consistency:

• SUTVA:

Y = WY (1) + (1−W )Y (0)

• Unconfoundedness:

Y (0),Y (1) ⊥⊥W | X
• Bounded outcomes

• Overlap: ∃η > 0, ∀x ∈ X ,
η < e(x) < 1− η

21
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Our setting: multi-site decentralized observational data

• We consider K decentralized and potentially heterogeneous sites

• The goal is to estimate the ATE: τ = E
(
E(Y (1) − Y (0) | H)

)
=

∑K
k=1 P(H = k)τk

Source Obs. Covariates Treatment Outcomes

H i X1 X2 X3 W Y

1 1 2.3 1.5 M 1 3.2

1 2 2.2 3.1 F 0 2.8

...
...

...
...

...
...

...

2 1 4.5 5.0 F 1 4.1

...
...

...
...

...
...

...

K 1 3.7 2.0 F 0 2.8

...
...

...
...

...
...

...

K nK 2.5 1.7 M 0 3.2

W

X

Y

H

How to estimate τ without access to individual-level data?
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Federated Estimators



How to design a Federated IPW estimator?

τ̂∗IPW =
1

n

n∑
i=1

(
WiYi

e(Xi )
− (1−Wi )Yi

1− e(Xi )

)

• FL folks have thought of:

• learning a global propensity score model e(x) = P(Wi = 1 | X = x) [Guo et al., 2025] but

this is very restrictive (note: we would also like e to be non-parametric for consistency)

• Causal folks have thought of:

• One-shot averaging of local propensity models ek(x) = P(Wi = 1 | X = x ,H = k),

restricting to parameters assumed to be shared across sites [Xiong et al., 2023]

• Reweighting with density ratios fk(X )/f (X ), either parametrically under strong assumptions

[Han et al., 2023] or non-parametrically without FL algorithm [Guo et al., 2024]
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Our approach: decompose the global propensity score

• Using simple manipulations we can rewrite:

e(X ) =
K∑

k=1

P(H = k | X )︸ ︷︷ ︸
membership weights

ek(X )

• Therefore, each site can learn its local propensity score independently with the

(non-parametric) model of their choice → maximum flexibility

• Learning the membership weights is a federated multi-class classification problem that can

be solved using standard FL methods

• Membership weights can be rewritten as density ratios: P(H = k | X ) = fk (X )∑K
k′=1

fk′ (X )
,

where fk(X ) is the density of X at site k → enables one-shot estimation procedure under

parametric assumptions of the local distributions.

• For AIPW, need to also learn µw (x) = E(Y |W = w ,X = x) for w ∈ {0, 1} → again a

standard federated regression problem, as in the case of RCTs [Khellaf et al., 2025b]
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Theoretical results

• We need the additional assumption of site ignorability: : Y (0),Y (1) ⊥⊥ H | X
⇒ Common conditional outcome models {µ1, µ0} across sites

⇒ H is not a confounder (no site-specific effect): learning e(X ) suffices to deconfound

Theorem (Variance comparison of oracle estimators — informal)

We have

V[τ̂∗IPW] = V[τ̂ fed
∗

IPW] ≤ V
[
τ̂meta∗

IPW

]
,

V[τ̂∗AIPW] = V[τ̂ fed
∗

AIPW] ≤ V
[
τ̂meta∗

AIPW

]
,

with equality when the local propensity scores are equal.

• Our approach is superior to meta-analysis when local overlap is low: we leverage

heterogeneity in treatment assignment to improve overlap
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Empirical results

Pooled Oracle Federated 
(MW w/ NN)

Federated (Gaussian density 
ratios weights)

Meta IPW True ATEAIPW

8

9

10

11

12

13

(a) No local overlap

external control arm in site 2

8

9

10

11

12

13

(b) Poor local overlap

min(e2(x)) = 10−3

8

9

10

11

12

13

(c) Good local overlap

min(e2(x)) = 0.1
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Conclusion & Perspectives

• Key takeaway: Federated learning can address data-sharing challenges in causal

inference, but dedicated methods are needed to ensure causal validity

• Many open problems:

• Non-collapsible causal measures (e.g., odds ratio)

• Differential privacy guarantees (see [Lebeda et al., 2025] for the centralized case)

• Move beyond ATE towards more personalization

• Transfer treatment effects to different target populations
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Thank you for your attention!

Questions?
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