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Federated causal inference

Goal of causal inference: measure the effect of a treatment on an outcome

Randomized Controlled Trials (RCTs):

Treated Control

+ : direct causal association

− : limited scope (eligibility criteria), small

sample sizes, not always feasible

Observational Data:
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Federated causal inference

Multi-source causal inference: higher validity and generalization

Randomized Controlled Trials (RCTs):

Study A

Study B Study C

+ : direct causal association

− : limited scope (eligibility criteria), small

sample sizes, not always feasible

Observational Data:

Hospital A

Hospital B Hospital C

+ : abundant, large scope, always available

− : naturally scattered across sites (e.g.,

hospitals), confounding factors 1



Classic approach: Meta-analysis

Meta-analysis (MA) combines effects from multiple studies

It is at the top of the evidence hierarchy
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Classic approach: Meta-analysis

Meta-analysis (MA) combines effects from multiple studies on:

Table 1 Table 2 Table 3

aggregation

+ + +

Aggregated Data (AD):

• Studies report summary statistics + effect

sizes which are aggregated into a single one.

• Limitation: Prone to ecological bias.

Table 1 Table 2 Table 3

Pooled Table

data centralisation

Individual Patient Data (IPD):

• Studies’ data are pooled together before

causal analysis.

• Limitation: Harder to share individual data
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Enabling individual patient data analysis with federated learning

IPD cannot always be pooled

altogether

data center

• Data may be too sensitive to share:

personal data regulations (GDPR,

HIPAA...), no consent and release

agreement during data collection

• Parties may have competitive

concerns (e.g., pharmaceutical

companies performing costly RCTs)

Federated Learning enables IPD analysis without pooling

• Client-server architecture enabling collaborative learning

without sharing individual data

• Recent framework with strong theoretical guarantees

[Kairouz et al., 2021]

• Encompasses privacy (e.g., differential privacy) and

security concerns (e.g., adversarial attacks)
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Going beyond meta-analysis with federated causal inference

Our work bridges causal inference and federated learning [Kairouz et al., 2021] to better

estimate average treatment effects from decentralized data sources

1. We consider several estimators with varying communication costs

2. We study their statistical performance under various types of data heterogeneity

3. We validate on numerical experiments and provide guidelines for practitioners

Multiple RCTs1: compares meta-analysis, one-shot and multi-shot FL

Multiple sites with observational data2: focuses on the federation of heterogeneous

propensity scores to estimate the ATE

1R.K., A. Bellet, and J. Josse. ”Federated Causal Inference: Multi-Centric ATE Estimation beyond

Meta-Analysis.” AISTATS (2024).
2R.K., A. Bellet, and J. Josse. ”Federated Causal Inference from Multi-Site Observational Data via

Propensity Score Aggregation.” Arxiv (2025).
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Related work in Federated Causal Inference

• Multicentric framework: IPD meta-analysis offers clear advantages over AD, especially

when local datasets are small34

• Federation of model parameters: outcome and propensity score models can be

federated, but it is unclear how the subsequent ATE estimators compare to meta-analysis

on AD.

• Generalization: transferring ATE estimates from multiple source sites to a target domain

can be done with density ratio weighting method. Their approach resembles

meta-analysis, relying on aggregate statistics rather than individual-level data

3Riley, Richard D., et al. ”Two-stage or not two-stage? That is the question for IPD meta-analysis projects.”

Research synthesis methods 14.6 (2023)
4Robertson, Sarah E., et al. ”Center-specific causal inference with multicenter trials: reinterpreting trial

evidence in the context of each participating center.” arXiv (2021)
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Problem Setting:

Observational Data



Reminder: Classic centralized framework with observational data

• Goal: estimate effect of treatment W on outcome Y given covariates X

• Average Treatment Effect (ATE) measured as a risk difference τ = E[Yi (1)− Yi (0)]

• Confounded: account for either P(Wi = 1 | Xi ) = e(Xi ) or E(Yi |Wi ,Xi ) = µWi (Xi )

Obs. Covariates Treatment Outcome Potential Outcomes

i X1 X2 X3 W Y Y (1) Y (0)

1 2.3 1.5 M 1 3.2 3.2 ??

2 2.2 3.1 F 0 2.8 ?? 2.8

3 3.5 2.0 F 1 2.1 2.1 ??

...
...

...
...

...
...

...
...

n − 1 3.7 2.0 F 0 2.8 ?? 2.8

n 2.5 1.7 M 1 3.2 3.2 ??

W

X

Y
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Reminder: Classic centralized framework with observational data

• Goal: estimate effect of treatment W on outcome Y given covariates X

• Average Treatment Effect (ATE) measured as a risk difference τ = E[Yi (1)− Yi (0)]

• Confounded: account for either P(Wi = 1 | Xi ) = e(Xi ) or E(Yi |Wi ,Xi ) = µWi (Xi )

Classic (oracle) centralized ATE estimators

Inverse Propensity Weighting (IPW):

τ̂∗IPW =
1

n

n∑
i=1

(
WiYi

e(Xi )
− (1−Wi )Yi

1− e(Xi )

)

:

τ̂∗AIPW =
1

n

n∑
i=1

(Wi (Yi − µ1(Xi ))

e(Xi )
− (1−Wi ) (Yi − µ0(Xi ))

1− e(Xi )

+µ1(Xi )− µ0(Xi )
)

Assumptions for consistency:

• Unconfoundedness:

Y (0),Y (1) ⊥⊥W | X
• Consistency:

Y (w) = Yi |Wi = w ,Xi

• Bounded outcomes

• Overlap: ∃η > 0, ∀Xi ∈ X ,
η < e(Xi ) < 1− η
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Our setting: multi-site decentralized observational data

• We consider K decentralized and potentially heterogeneous sites

• The goal is to estimate the ATE: τ = E
(
E(Y (1) − Y (0) | H)

)
=

∑K
k=1 P(H = k)τk

Source Obs. Covariates Treatment Outcomes

H i X1 X2 X3 W Y

1 1 2.3 1.5 M 1 3.2

1 2 2.2 3.1 F 0 2.8

...
...

...
...

...
...

...

2 1 4.5 5.0 F 1 4.1

...
...

...
...

...
...

...

K 1 3.7 2.0 F 0 2.8

...
...

...
...

...
...

...

K nK 2.5 1.7 M 0 3.2

W

X

Y

H

How to estimate τ without access to individual-level data?
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X

Y
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7



Our setting: multi-site decentralized observational data

• We consider K decentralized and potentially heterogeneous sites

• The goal is to estimate the ATE: τ = E
(
E(Y (1) − Y (0) | H)

)
=

∑K
k=1 P(H = k)τk

Source Obs. Covariates Treatment Outcomes

H i X1 X2 X3 W Y

1 1 2.3 1.5 M 1 3.2

1 2 2.2 3.1 F 0 2.8

...
...

...
...

...
...

...

2 1 4.5 5.0 F 1 4.1

...
...

...
...

...
...

...

K 1 3.7 2.0 F 0 2.8

...
...

...
...

...
...

...

K nK 2.5 1.7 M 0 3.2

Heterogeneity in covariates

distribution

W

X

Y

H

X | H = k ≁ X | H = k ′

How to estimate τ without access to individual-level data?

7



Our setting: multi-site decentralized observational data

• We consider K decentralized and potentially heterogeneous sites

• The goal is to estimate the ATE: τ = E
(
E(Y (1) − Y (0) | H)

)
=

∑K
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K 1 3.7 2.0 F 0 2.8

...
...

...
...

...
...

...

K nK 2.5 1.7 M 0 3.2

Constraint: cannot pool data

⇒ no access to e, µ1, µ0

⇒ cannot compute (A)IPW

estimators

W

X

Y

H

How to estimate τ without access to individual-level data? 7



Oracle Multi-Site ATE

Estimators

Meta-Analysis



Baseline estimators: oracle meta-analysis

A meta-analysis estimator is a weighted average of local estimates {τ̂k}k , which are

computed with local nuisance functions ek(Xi ), µ1,k(Xi ), µ0,k(Xi )

τ̂meta =
K∑

k=1

ρk τ̂k

with ρk = P(Hi = k) ≈ nk
n and

τ̂k =


1

nk

nk∑
i=1

(
µ1,k(Xi )− µ0,k(Xi ) +

Wi (Yi − µ1,k(Xi ))

ek(Xi )
− (1−Wi )(Yi − µ0,k(Xi ))

1− ek(Xi )

)
(AIPW)

1

nk

nk∑
i=1

( WiYi

ek(Xi )
− (1−Wi )Yi

1− ek(Xi )

)
(IPW)
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Baseline estimators: oracle meta-analysis

A meta-analysis estimator is a weighted average of local estimates {τ̂k}k , which are

computed with local nuisance functions ek(Xi ), µ1,k(Xi ), µ0,k(Xi )

τ̂meta =
K∑

k=1

ρk τ̂k

(Asymptotically consistent) τ̂meta p−→
n→∞

τ if all local estimates are asymptotically consistent,

i.e., ∀k ∈ [K ], τ̂k
p−→

nk→∞
τk , which requires at each site k:

• Unconfoundedness, consistency, bounded potential outcomes

• Local overlap: ∃η,∀x ∈ Xη < ek(x) < 1− η

⇒ forbids the inclusion of sites with no (un)treated individuals for some Xi (e.g. external

control arms, systematic treatment rule...)
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Oracle Multi-Site ATE

Estimators

Federated Estimators



Federated estimators: introduction

• Principle: decompartmentalize the estimation of the causal effect, i.e., leverage

individual-level data without sharing raw data

• We assume site ignorability: (Y (0),Y (1)) ⊥⊥ H | X
⇒ common conditional outcome models {µ1, µ0} across sites

⇒ no centre effect: H is not a confounder, so learning e(X ) suffices to deconfound.

• Can be relaxed with parametric modelling of the effect of H on Y and/or learning e(X ;H).

• We do not assume common treatment assignments {ek}k across sites

• highly flexible framework, can handle all kinds of heterogeneity in treatment allocations (not

just intercept shift)

• realistic setting: e.g., different hospitals may have different treatment protocols

• if ready to make the assumption of homogeneity in {ek}k , e(X ) can be learned directly with

a federated SGD algorithm

9
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Federated estimators: propensity score decomposition

µ1, µ0 are common across sites ⇒ can be learned with a federated SGD algorithm (see later)

The propensity scores are heterogeneous across sites ⇒ directly learning a global e is inefficient

⇒ other learning strategies must be considered

Our method:

e in the pooled dataset decomposes as a weighted sum of the local ones:

e(x) =
K∑

k=1

ωk(x)ek(x)

⇒ learn federation weights ωk(x) = P(Hi = k | Xi = x) and local propensity scores

ek(x) = P(Wi = 1 | Xi = x ,Hi = k)

10
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Federated estimators: oracle form

A federated estimator of the ATE is a weighted average of local estimates {τ̂ fedk }k , which
are computed with global nuisance functions e, µ1, µ0

τ̂ fed =
K∑

k=1

ρk τ̂
fed
k

with ρk = P(Hi = k) ≈ nk
n and

τ̂k =


1

nk

nk∑
i=1

(
µ1(Xi )− µ0(Xi ) +

Wi (Yi − µ1(Xi ))

e(Xi )
− (1−Wi )(Yi − µ0(Xi ))

1− e(Xi )

)
(AIPW)

1

nk

nk∑
i=1

(WiYi

e(Xi )
− (1−Wi )Yi

1− e(Xi )

)
(IPW)
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Federated estimators: oracle form

A federated estimator of the ATE is a weighted average of local estimates {τ̂ fedk }k , which
are computed with global nuisance functions e, µ1, µ0

τ̂ fed =
K∑

k=1

ρk τ̂
fed
k

(Asymptotically consistent) τ̂ fed
p−→

n→∞
τ if globally hold:

• Unconfoundedness, consistency, bounded potential outcomes

• Global overlap: ∃η,∀x ∈ X , η < e(x) < 1− η

⇒ allows the inclusion of sites with no (un)treated individuals for some Xi , as long as other

sites cover them
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Theoretical results and numerical illustrations

Assuming global overlap:

• τ̂ fed
∗
= τ̂pool

∗

• If no local overlap in at least one site: cannot compute

τ̂meta∗ , only τ̂ fed
∗

• If local overlap at every site:

• τ̂meta∗ can be computed too

• The global overlap is always ”better” than the worst

local ones: Oglobal ≤
∑K

k=1 ρkOk

⇒ Improved stability of τ̂ fed∗
over τ̂meta∗

12
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⇒ Improved stability of τ̂ fed∗
over τ̂meta∗

⇒ V(τ̂pool∗) = V(τ̂ fed∗
) < V(τ̂meta∗) if heterogeneous ek ’s,

equality if homogeneous

⇒ Federated estimators should

always be preferred over

meta-analysis when no

communication constraints.
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Federated Estimators

Propensity Score Estimation in Practice



Learning a global propensity score with federated learning

The propensity score in the pooled dataset decomposes as e(x) =
∑K

k=1 ωk(x)ek(x) with

ωk(x) = P(Hi = k | Xi = x) the federation weights. Then, to estimate e:

• ek ’s: locally estimated with any (non-)parametric method (logistic, generalized random

forests [Athey et al., 2019], etc.) → flexible, handles treatment allocation heterogeneity

• ωk(x)’s:

• Membership Weights (MW): H | X

ωk(x) = P(Hi = k | Xi = x)

→ estimate with a federated probabilitic classifier (logistic regression, neural networks...)

• Density Ratio Weights (DW): X | H

ωk(x) = P(Hi = k)
P(Xi = x | Hi = k)

P(Xi = x)
= ρk

fk(x)

f (x)

→ estimate fk by parametric density estimation (e.g., Gaussian Mixture Models) at site k

and global density by f (x) =
∑K

k=1 ρk fk(x) with ρk = P(Hi = k)
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Learning a global propensity score with federated learning

The propensity score in the pooled dataset decomposes as e(x) =
∑K

k=1 ωk(x)ek(x) with

ωk(x) = P(Hi = k | Xi = x) the federation weights. Then, to estimate e:

MW DW

P(Hi = k | Xi )
ρk fk (Xi )
f (Xi )

Flexible / non-parametric ✓ ✗

Comm. rounds T 1

Comm. cost O(TKd) O(Kd2)

Scales to high d ✓ ✗
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Fed-MW estimation with FedAvg

ω̂k(x) = Pθ̂(Hi = k | Xi = x)

Algorithm FedAvg (server-side)

initialize global model parameters θ0
for each round t = 1 to T do

for each client k ∈ K in parallel do

θk ← ClientUpdate(k , θ)

θ ←
∑

k∈K
nk
n θk // FedAvg

Algorithm ClientUpdate(k, θ)

θ(k) ← θ

for local step e = 1 to E do

Bk ← mini-batch of B samples from Dk

compute ∇θL(θ(k);Bk)
update θ(k) ← θ(k) − η∇θL(θ(k);Bk)

return θ(k) to server
14
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Fed-MW estimation with FedAvg
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Fed-MW estimation with FedAvg

• T comm. rounds: larger improves

accuracy but increases comm. cost.

Typically 100− 1000 for deep

learning models.

• E local updates: larger improves

local convergence but can cause

drift in heterogeneous settings.

1− 5 works well.

• η learning rate: typically 0.01− 0.1

for logistic regression, 0.001− 0.01

for deep learning models.

Same principle to estimate global

outcome models µ1, µ0
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Multi-site estimators: summary

Meta-Analysis

2. Estimate Local 
ATEs  { ̂τk}1,..,K

3. Aggregate the 
 to get { ̂τk}1,..,K ̂τ

1. Estimate 
nuisance functions

K local estimations

̂θ1,k, ̂θ0,k

̂τ1 ̂τk

̂τmeta =
K

∑
k=1

nk

n
̂τk

̂τK

̂ek(x)

̂τk = 1
nk

nk

∑
i=1

τ(Xi; ̂ek, ̂θ1,k, ̂θ0,k)

• Meta requires local overlap, federated estimators just global overlap.
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Numerical illustration

• K = 3 sites, d = 10, nk = 500

• Non-linear µ1, µ0 estimated

with misspecified federated

linear regression → double

robustness of Fed-AIPW

• ek(x) = Logistic(γk , x)

• MW: Federated logistics, do

not work well with ̸= Σk ’s

• No local overlap: e2(x) = 0

site 2 is an external control

arm → no meta-analysis

DGP X |H
X | H = k ∼ N (µk ,Σk)
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Conclusion

Limits of our approach:

• MW vs. DW: MW with Neural Networks always works but requires more local data

• Cross-silos setting:

• small K since number of federation weights’ parameters grows with K

• large nk to estimate ek ’s, outcome models, membership probabilities/density parameters

Perspectives:

• Handle centre effects beyond parametric modelling of e(X ,H)

• Handle covariate mismatch across sources

• Consider non-collapsible measures (e.g., odd-ratios)

• Provide robust privacy guarantees (differential privacy)

17



Thank you for your attention!

Questions?
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