Federated Causal Inference: ATE Estimation from Multi-Site Observational Data via Propensity Score Aggregation

Rémi Khellaf, Aurélien Bellet and Julie Josse (INRIA, Montpellier)

Federated causal inference

Goal of causal inference: measure the effect of a treatment on an outcome

Randomized Controlled Trials (RCTs):

- + : direct causal association
- : limited scope (eligibility criteria), small sample sizes, not always feasible

Federated causal inference

Goal of causal inference: measure the effect of a treatment on an outcome

Randomized Controlled Trials (RCTs):

- + : direct causal association
- ! limited scope (eligibility criteria), small sample sizes, not always feasible

Observational Data:

- + : abundant, large scope, always available
- : naturally scattered across sites (e.g., hospitals), confounding factors

Federated causal inference

Multi-source causal inference: higher validity and generalization

Randomized Controlled Trials (RCTs):

- + : direct causal association
- ! limited scope (eligibility criteria), small sample sizes, not always feasible

Observational Data:

- + : abundant, large scope, always available
- : naturally scattered across sites (e.g., hospitals), confounding factors

Classic approach: Meta-analysis

Meta-analysis (MA) combines effects from multiple studies

It is at the top of the evidence hierarchy

Classic approach: Meta-analysis

Meta-analysis (MA) combines effects from multiple studies on:

Aggregated Data (AD):

- Studies report summary statistics + effect sizes which are aggregated into a single one.
- Limitation: Prone to ecological bias.

Classic approach: Meta-analysis

Meta-analysis (MA) combines effects from multiple studies on:

Aggregated Data (AD):

- Studies report summary statistics + effect sizes which are aggregated into a single one.
- Limitation: Prone to ecological bias.

Individual Patient Data (IPD):

- Studies' data are pooled together before causal analysis.
- Limitation: Harder to share individual data

Enabling individual patient data analysis with federated learning

IPD cannot always be pooled altogether

- Data may be too sensitive to share: personal data regulations (GDPR, HIPAA...), no consent and release agreement during data collection
- Parties may have competitive concerns (e.g., pharmaceutical companies performing costly RCTs)

Enabling individual patient data analysis with federated learning

IPD cannot always be pooled altogether

- Data may be too sensitive to share: personal data regulations (GDPR, HIPAA...), no consent and release agreement during data collection
- Parties may have competitive concerns (e.g., pharmaceutical companies performing costly RCTs)

Federated Learning enables IPD analysis without pooling

- Client-server architecture enabling collaborative learning without sharing individual data
- Recent framework with strong theoretical guarantees [Kairouz et al., 2021]
- Encompasses privacy (e.g., differential privacy) and security concerns (e.g., adversarial attacks)

Going beyond meta-analysis with federated causal inference

Our work bridges causal inference and federated learning [Kairouz et al., 2021] to better estimate average treatment effects from decentralized data sources

- 1. We consider several estimators with varying communication costs
- 2. We study their statistical performance under various types of data heterogeneity
- 3. We validate on numerical experiments and provide guidelines for practitioners

¹R.K., A. Bellet, and J. Josse. "Federated Causal Inference: Multi-Centric ATE Estimation beyond Meta-Analysis." AISTATS (2024).

²R.K., A. Bellet, and J. Josse. "Federated Causal Inference from Multi-Site Observational Data via Propensity Score Aggregation." Arxiv (2025).

Going beyond meta-analysis with federated causal inference

Our work bridges causal inference and federated learning [Kairouz et al., 2021] to better estimate average treatment effects from decentralized data sources

- 1. We consider several estimators with varying communication costs
- 2. We study their statistical performance under various types of data heterogeneity
- 3. We validate on numerical experiments and provide guidelines for practitioners

Multiple RCTs¹: compares meta-analysis, one-shot and multi-shot FL

¹R.K., A. Bellet, and J. Josse. "Federated Causal Inference: Multi-Centric ATE Estimation beyond Meta-Analysis." AISTATS (2024).

²R.K., A. Bellet, and J. Josse. "Federated Causal Inference from Multi-Site Observational Data via Propensity Score Aggregation." Arxiv (2025).

Going beyond meta-analysis with federated causal inference

Our work bridges causal inference and federated learning [Kairouz et al., 2021] to better estimate average treatment effects from decentralized data sources

- 1. We consider several estimators with varying communication costs
- 2. We study their statistical performance under various types of data heterogeneity
- 3. We validate on numerical experiments and provide guidelines for practitioners

Multiple RCTs¹: compares meta-analysis, one-shot and multi-shot FL

Multiple sites with observational data²: focuses on the federation of heterogeneous propensity scores to estimate the ATE

¹R.K., A. Bellet, and J. Josse. "Federated Causal Inference: Multi-Centric ATE Estimation beyond Meta-Analysis." AISTATS (2024).

²R.K., A. Bellet, and J. Josse. "Federated Causal Inference from Multi-Site Observational Data via Propensity Score Aggregation." Arxiv (2025).

Related work in Federated Causal Inference

• Multicentric framework: IPD meta-analysis offers clear advantages over AD, especially when local datasets are small³⁴

³Riley, Richard D., et al. "Two-stage or not two-stage? That is the question for IPD meta-analysis projects." Research synthesis methods 14.6 (2023)

⁴Robertson, Sarah E., et al. "Center-specific causal inference with multicenter trials: reinterpreting trial evidence in the context of each participating center." arXiv (2021)

Related work in Federated Causal Inference

- Multicentric framework: IPD meta-analysis offers clear advantages over AD, especially when local datasets are small
- Federation of model parameters: outcome and propensity score models can be federated³⁴, but it is unclear how the subsequent ATE estimators compare to meta-analysis on AD.

³Xiong, Ruoxuan, et al. "Federated causal inference in heterogeneous observational data." Statistics in Medicine (2023)

⁴Vo, Thanh Vinh, and Tze-Yun Leong. "Federated Causal Inference from Observational Data." arXiv (2023)

Related work in Federated Causal Inference

- Multicentric framework: IPD meta-analysis offers clear advantages over AD, especially when local datasets are small
- Federation of model parameters: outcome and propensity score models can be federated, but it is unclear how the subsequent ATE estimators compare to meta-analysis on AD.
- **Generalization**: transferring ATE estimates from multiple source sites to a target domain can be done with density ratio weighting method³. Their approach resembles meta-analysis, relying on aggregate statistics rather than individual-level data

³Han, Larry, et al. "Federated adaptive causal estimation (face) of target treatment effects." Journal of the American Statistical Association (2025)

Problem Setting:

Observational Data

- Goal: estimate effect of treatment W on outcome Y given covariates X
- Average Treatment Effect (ATE) measured as a risk difference $\tau = \mathbb{E}[Y_i(1) Y_i(0)]$
- Confounded: account for either $\mathbb{P}(W_i = 1 \mid X_i) = e(X_i)$ or $\mathbb{E}(Y_i \mid W_i, X_i) = \mu_{W_i}(X_i)$

Obs.	Covariates		Treatment	Outcome	Potential Outcomes		
i	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	W	Y	Y ⁽¹⁾	Y ⁽⁰⁾
1	2.3	1.5	М	1	3.2	3.2	??
2	2.2	3.1	F	0	2.8	??	2.8
3	3.5	2.0	F	1	2.1	2.1	??
:	:	:	:	:	:	:	:
n-1	3.7	2.0	F	0	2.8	??	2.8
n	2.5	1.7	М	1	3.2	3.2	??

- Goal: estimate effect of treatment W on outcome Y given covariates X
- Average Treatment Effect (ATE) measured as a risk difference $\tau = \mathbb{E}[Y_i(1) Y_i(0)]$
- Confounded: account for either $\mathbb{P}(W_i = 1 \mid X_i) = e(X_i)$ or $\mathbb{E}(Y_i \mid W_i, X_i) = \mu_{W_i}(X_i)$

Classic (oracle) centralized ATE estimators

Inverse Propensity Weighting (IPW):

$$\hat{\tau}_{\text{IPW}}^* = \frac{1}{n} \sum_{i=1}^n \left(\frac{W_i Y_i}{e(X_i)} - \frac{(1 - W_i) Y_i}{1 - e(X_i)} \right)$$

- Goal: estimate effect of treatment W on outcome Y given covariates X
- Average Treatment Effect (ATE) measured as a risk difference $\tau = \mathbb{E}[Y_i(1) Y_i(0)]$
- Confounded: account for either $\mathbb{P}(W_i = 1 \mid X_i) = e(X_i)$ or $\mathbb{E}(Y_i \mid W_i, X_i) = \mu_{W_i}(X_i)$

Classic (oracle) centralized ATE estimators

Inverse Propensity Weighting (IPW):

$$\hat{\tau}_{\text{IPW}}^* = \frac{1}{n} \sum_{i=1}^n \left(\frac{W_i Y_i}{e(X_i)} - \frac{(1 - W_i) Y_i}{1 - e(X_i)} \right)$$

Augmented IPW (AIPW):

$$\hat{\tau}_{\text{AIPW}}^* = \frac{1}{n} \sum_{i=1}^n \left(\frac{W_i (Y_i - \mu_1(X_i))}{e(X_i)} - \frac{(1 - W_i) (Y_i - \mu_0(X_i))}{1 - e(X_i)} + \mu_1(X_i) - \mu_0(X_i) \right)$$

- Goal: estimate effect of treatment W on outcome Y given covariates X
- Average Treatment Effect (ATE) measured as a risk difference $\tau = \mathbb{E}[Y_i(1) Y_i(0)]$
- Confounded: account for either $\mathbb{P}(W_i = 1 \mid X_i) = e(X_i)$ or $\mathbb{E}(Y_i \mid W_i, X_i) = \mu_{W_i}(X_i)$

Classic (oracle) centralized ATE estimators

Inverse Propensity Weighting (IPW):

$$\hat{\tau}_{\text{IPW}}^* = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{W_i Y_i}{e(X_i)} - \frac{(1 - W_i) Y_i}{1 - e(X_i)} \right)$$

Augmented IPW (AIPW):

$$\hat{\tau}_{\text{AIPW}}^* = \frac{1}{n} \sum_{i=1}^n \left(\frac{W_i (Y_i - \mu_1(X_i))}{e(X_i)} - \frac{(1 - W_i) (Y_i - \mu_0(X_i))}{1 - e(X_i)} + \mu_1(X_i) - \mu_0(X_i) \right)$$

Assumptions for consistency:

- Unconfoundedness: $Y(0), Y(1) \perp \!\!\!\perp W \mid X$
- Consistency: $Y(w) = Y_i \mid W_i = w, X_i$
- Bounded outcomes
- Overlap: $\exists \eta > 0, \ \forall X_i \in \mathcal{X}, \\ \eta < e(X_i) < 1 \eta$

- We consider K decentralized and potentially heterogeneous sites
- The goal is to estimate the ATE: $\tau = \mathbb{E}\left(\mathbb{E}(Y^{(1)} Y^{(0)} \mid H)\right) = \sum_{k=1}^K \mathbb{P}(H = k)\tau_k$

Source	Obs.	Covariates			Treatment	Outcomes
Н	i	X_1	X_2	<i>X</i> ₃	W	Y
1	1	2.3	1.5	М	1	3.2
1	2	2.2	3.1	F	0	2.8
:	:	:	:	:	:	:
2	1	4.5	5.0	F	1	4.1
:	:	:	:	:	÷	i:
K	1	3.7	2.0	F	0	2.8
:	:	:	:	:	:	:
K	n_K	2.5	1.7	М	0	3.2

- We consider K decentralized and potentially heterogeneous sites
- The goal is to estimate the ATE: $\tau = \mathbb{E}\left(\mathbb{E}(Y^{(1)} Y^{(0)} \mid H)\right) = \sum_{k=1}^K \mathbb{P}(H = k)\tau_k$

Source	Obs.	Covariates			Treatment	Outcomes
Н	i	X_1	X_2	<i>X</i> ₃	W	Y
1	1	2.3	1.5	М	1	3.2
1	2	2.2	3.1	F	0	2.8
:	:	:	:	:	:	i i
2	1	4.5	5.0	F	1	4.1
:	:	:	:	:	:	i i
K	1	3.7	2.0	F	0	2.8
:	:	:	:	:	:	:
K	n_K	2.5	1.7	М	0	3.2

Heterogeneity in **treatment allocations** $e_k = \mathbb{P}(W_i \mid X_i, H_i = k)$

- We consider K decentralized and potentially heterogeneous sites
- The goal is to estimate the ATE: $\tau = \mathbb{E}\left(\mathbb{E}(Y^{(1)} Y^{(0)} \mid H)\right) = \sum_{k=1}^K \mathbb{P}(H = k)\tau_k$

Source	Obs.	Covariates		Treatment	Outcomes	
Н	i	X_1	X_2	<i>X</i> ₃	W	Y
1	1	2.3	1.5	М	1	3.2
1	2	2.2	3.1	F	0	2.8
:	:	:	:	:	:	i i
2	1	4.5	5.0	F	1	4.1
:	:	:	:	:	:	i i
K	1	3.7	2.0	F	0	2.8
:	:	:	:	:	:	:
K	n _K	2.5	1.7	М	0	3.2

Heterogeneity in **covariates distribution**

- We consider K decentralized and potentially heterogeneous sites
- The goal is to estimate the ATE: $\tau = \mathbb{E}\left(\mathbb{E}(Y^{(1)} Y^{(0)} \mid H)\right) = \sum_{k=1}^K \mathbb{P}(H = k)\tau_k$

Source	Obs.	Covariates			Treatment	Outcomes
Н	i	X_1	X_2	<i>X</i> ₃	W	Y
1	1	2.3	1.5	М	1	3.2
1	2	2.2	3.1	F	0	2.8
:	:	:	:	:	:	:
2	1	4.5	5.0	F	1	4.1
:	:	:	:	:	:	÷
K	1	3.7	2.0	F	0	2.8
:	÷	:	:	:	:	:
K	n _K	2.5	1.7	М	0	3.2

Constraint: cannot pool data \Rightarrow no access to e, μ_1, μ_0 \Rightarrow cannot compute (A)IPW estimators

How to estimate τ without access to individual-level data?

Oracle Multi-Site ATE Estimators

Meta-Analysis

Baseline estimators: oracle meta-analysis

A meta-analysis estimator is a weighted average of local estimates $\{\hat{\tau}_k\}_k$, which are computed with local nuisance functions $e_k(X_i), \mu_{1,k}(X_i), \mu_{0,k}(X_i)$

$$\hat{\tau}^{\text{meta}} = \sum_{k=1}^{K} \rho_k \hat{\tau}_k$$

with $ho_k = \mathbb{P}(H_i = k) pprox rac{n_k}{n}$ and

$$\hat{\tau}_{k} = \begin{cases} \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \left(\mu_{1,k}(X_{i}) - \mu_{0,k}(X_{i}) + \frac{W_{i}(Y_{i} - \mu_{1,k}(X_{i}))}{e_{k}(X_{i})} - \frac{(1 - W_{i})(Y_{i} - \mu_{0,k}(X_{i}))}{1 - e_{k}(X_{i})} \right) & \text{(AIPW)} \\ \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \left(\frac{W_{i}Y_{i}}{e_{k}(X_{i})} - \frac{(1 - W_{i})Y_{i}}{1 - e_{k}(X_{i})} \right) & \text{(IPW)} \end{cases}$$

8

Baseline estimators: oracle meta-analysis

A meta-analysis estimator is a weighted average of local estimates $\{\hat{\tau}_k\}_k$, which are computed with local nuisance functions $e_k(X_i), \mu_{1,k}(X_i), \mu_{0,k}(X_i)$

$$\hat{\tau}^{\text{meta}} = \sum_{k=1}^{K} \rho_k \hat{\tau}_k$$

(Asymptotically consistent) $\hat{\tau}^{\text{meta}} \xrightarrow[n \to \infty]{p} \tau$ if all local estimates are asymptotically consistent, i.e., $\forall k \in [K], \hat{\tau}_k \xrightarrow[n_k \to \infty]{p} \tau_k$, which requires at each site k:

- Unconfoundedness, consistency, bounded potential outcomes
- Local overlap: $\exists \eta, \forall x \in \mathcal{X} \eta < e_k(x) < 1 \eta$
- \Rightarrow forbids the inclusion of sites with no (un)treated individuals for some X_i (e.g. external control arms, systematic treatment rule...)

Oracle Multi-Site ATE Estimators

Estimators _____

Federated Estimators

Federated estimators: introduction

• Principle: **decompartmentalize** the estimation of the causal effect, i.e., leverage individual-level data **without sharing raw data**

Federated estimators: introduction

- Principle: decompartmentalize the estimation of the causal effect, i.e., leverage individual-level data without sharing raw data
- We assume site ignorability: $(Y(0), Y(1)) \perp \!\!\!\perp H \mid X$
 - \Rightarrow common conditional outcome models $\{\mu_1, \mu_0\}$ across sites
 - \Rightarrow no centre effect: H is not a confounder, so learning e(X) suffices to deconfound.
 - Can be relaxed with parametric modelling of the effect of H on Y and/or learning e(X; H).

Federated estimators: introduction

- Principle: decompartmentalize the estimation of the causal effect, i.e., leverage individual-level data without sharing raw data
- We assume site ignorability: $(Y(0), Y(1)) \perp \!\!\!\perp H \mid X$
 - \Rightarrow common conditional outcome models $\{\mu_1, \mu_0\}$ across sites
 - \Rightarrow no centre effect: H is not a confounder, so learning e(X) suffices to deconfound.
 - Can be relaxed with parametric modelling of the effect of H on Y and/or learning e(X; H).
- ullet We do not assume common treatment assignments $\{e_k\}_k$ across sites
 - highly flexible framework, can handle all kinds of heterogeneity in treatment allocations (not just intercept shift)
 - realistic setting: e.g., different hospitals may have different treatment protocols
 - if ready to make the assumption of homogeneity in $\{e_k\}_k$, e(X) can be learned directly with a federated SGD algorithm

 μ_1, μ_0 are common across sites \Rightarrow can be learned with a federated SGD algorithm (see later)

 μ_1, μ_0 are common across sites \Rightarrow can be learned with a federated SGD algorithm (see later)

The propensity scores are heterogeneous across sites \Rightarrow directly learning a global e is inefficient \Rightarrow other learning strategies must be considered

 μ_1, μ_0 are common across sites \Rightarrow can be learned with a federated SGD algorithm (see later)

The propensity scores are heterogeneous across sites \Rightarrow directly learning a global e is inefficient \Rightarrow other learning strategies must be considered

Our method:

e in the pooled dataset decomposes as a weighted sum of the local ones:

$$\mathbf{e}(\mathbf{x}) = \sum_{k=1}^{K} \omega_k(\mathbf{x}) e_k(\mathbf{x})$$

 μ_1, μ_0 are common across sites \Rightarrow can be learned with a federated SGD algorithm (see later)

The propensity scores are heterogeneous across sites \Rightarrow directly learning a global e is inefficient \Rightarrow other learning strategies must be considered

Our method:

e in the pooled dataset decomposes as a weighted sum of the local ones:

$$e(x) = \sum_{k=1}^{K} \omega_k(x) e_k(x)$$

 \Rightarrow learn federation weights $\omega_k(x) = \mathbb{P}(H_i = k \mid X_i = x)$ and local propensity scores $e_k(x) = \mathbb{P}(W_i = 1 \mid X_i = x, H_i = k)$

Federated estimators: oracle form

A federated estimator of the ATE is a weighted average of local estimates $\{\hat{\tau}_k^{\rm fed}\}_k$, which are computed with global nuisance functions e, μ_1, μ_0

$$\hat{\tau}^{\text{fed}} = \sum_{k=1}^{K} \rho_k \hat{\tau}_k^{\text{fed}}$$

with $ho_k = \mathbb{P}(H_i = k) pprox rac{n_k}{n}$ and

$$\hat{\tau}_{k} = \begin{cases} \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \left(\mu_{1}(X_{i}) - \mu_{0}(X_{i}) + \frac{W_{i}(Y_{i} - \mu_{1}(X_{i}))}{e(X_{i})} - \frac{(1 - W_{i})(Y_{i} - \mu_{0}(X_{i}))}{1 - e(X_{i})} \right) & \text{(AIPW)} \\ \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \left(\frac{W_{i}Y_{i}}{e(X_{i})} - \frac{(1 - W_{i})Y_{i}}{1 - e(X_{i})} \right) & \text{(IPW)} \end{cases}$$

Federated estimators: oracle form

A federated estimator of the ATE is a weighted average of local estimates $\{\hat{\tau}_k^{\text{fed}}\}_k$, which are computed with global nuisance functions e, μ_1 , μ_0

$$\hat{ au}^{ ext{fed}} = \sum_{k=1}^K
ho_k \hat{ au}_k^{ ext{fed}}$$

(Asymptotically consistent) $\hat{\tau}^{\mathrm{fed}} \xrightarrow[n \to \infty]{p} \tau$ if globally hold:

- Unconfoundedness, consistency, bounded potential outcomes
- Global overlap: $\exists \eta, \forall x \in \mathcal{X}, \eta < e(x) < 1 \eta$
- \Rightarrow allows the inclusion of sites with no (un)treated individuals for some X_i , as long as other sites cover them

Assuming global overlap:

 $oldsymbol{\hat{ au}}^{ ext{fed}^*} = \hat{ au}^{ ext{pool}^*}$

Assuming global overlap:

- $\hat{\tau}^{\text{fed}^*} = \hat{\tau}^{\text{pool}^*}$
- If no local overlap in at least one site: cannot compute $\hat{\tau}^{\mathrm{meta}^*}$, only $\hat{\tau}^{\mathrm{fed}^*}$

Assuming global overlap:

- $\hat{\tau}^{\text{fed}^*} = \hat{\tau}^{\text{pool}^*}$
- If no local overlap in at least one site: cannot compute $\hat{\tau}^{\mathrm{meta}^*}$, only $\hat{\tau}^{\mathrm{fed}^*}$
- If local overlap at every site:

Assuming global overlap:

- $\hat{\tau}^{\text{fed}^*} = \hat{\tau}^{\text{pool}^*}$
- If no local overlap in at least one site: cannot compute $\hat{\tau}^{\mathrm{meta}^*}$, only $\hat{\tau}^{\mathrm{fed}^*}$
- If local overlap at every site:
 - ullet $\hat{ au}^{\mathrm{meta}^*}$ can be computed too

Assuming global overlap:

- $\hat{\tau}^{\text{fed}^*} = \hat{\tau}^{\text{pool}^*}$
- If no local overlap in at least one site: cannot compute $\hat{\tau}^{\mathrm{meta}^*}$, only $\hat{\tau}^{\mathrm{fed}^*}$
- If local overlap at every site:
 - $oldsymbol{\hat{ au}}^{\mathrm{meta}^*}$ can be computed too
 - The global overlap is always "better" than the worst local ones: $\mathcal{O}_{\text{global}} \leq \sum_{k=1}^{K} \rho_k \mathcal{O}_k$

Overlap at site k: $\mathcal{O}_k = \mathbb{E}_{X \sim P_k} \left[1/(e_k(X_i)(1 - e_k(X_i))) \right]$ Global overlap: $\mathcal{O}_{\text{global}} = \mathbb{E}_{X \sim P} \left[1/(e(X_i)(1 - e(X_i))) \right]$

Assuming global overlap:

- $\hat{\tau}^{\text{fed}^*} = \hat{\tau}^{\text{pool}^*}$
- If no local overlap in at least one site: cannot compute $\hat{\tau}^{\mathrm{meta}^*}$, only $\hat{\tau}^{\mathrm{fed}^*}$
- If local overlap at every site:
 - $oldsymbol{\hat{ au}}^{\mathrm{meta}^*}$ can be computed too
 - The global overlap is always "better" than the worst local ones: $\mathcal{O}_{\text{global}} \leq \sum_{k=1}^{K} \rho_k \mathcal{O}_k$
 - \Rightarrow Improved stability of $\hat{ au}^{\mathrm{fed}^*}$ over $\hat{ au}^{\mathrm{meta}^*}$

Overlap at site k: $\mathcal{O}_k = \mathbb{E}_{X \sim P_k} \left[1/(e_k(X_i)(1 - e_k(X_i))) \right]$ Global overlap: $\mathcal{O}_{\text{global}} = \mathbb{E}_{X \sim P} \left[1/(e(X_i)(1 - e(X_i))) \right]$

Assuming global overlap:

- $\hat{\tau}^{\text{fed}^*} = \hat{\tau}^{\text{pool}^*}$
- If no local overlap in at least one site: cannot compute $\hat{\tau}^{\mathrm{meta}^*}$, only $\hat{\tau}^{\mathrm{fed}^*}$
- If local overlap at every site:
 - ullet $\hat{ au}^{\mathrm{meta}^*}$ can be computed too
 - The global overlap is always "better" than the worst local ones: $\mathcal{O}_{\text{global}} \leq \sum_{k=1}^{K} \rho_k \mathcal{O}_k$
 - \Rightarrow Improved stability of $\hat{\tau}^{\text{fed}^*}$ over $\hat{\tau}^{\text{meta}^*}$

 $\Rightarrow \mathbb{V}(\hat{\tau}^{\text{pool}^*}) = \mathbb{V}(\hat{\tau}^{\text{fed}^*}) < \mathbb{V}(\hat{\tau}^{\text{meta}^*})$ if heterogeneous e_k 's, equality if homogeneous

Assuming global overlap:

- $\hat{\tau}^{\text{fed}^*} = \hat{\tau}^{\text{pool}^*}$
- If no local overlap in at least one site: cannot compute $\hat{\tau}^{\mathrm{meta}^*}$, only $\hat{\tau}^{\mathrm{fed}^*}$
- If local overlap at every site:
 - $\hat{\tau}^{\text{meta}^*}$ can be computed too
 - The global overlap is always "better" than the worst local ones: $\mathcal{O}_{\text{global}} \leq \sum_{k=1}^{K} \rho_k \mathcal{O}_k$
 - \Rightarrow Improved stability of $\hat{\tau}^{\text{fed}^*}$ over $\hat{\tau}^{\text{meta}^*}$
- $\Rightarrow \mathbb{V}(\hat{\tau}^{\text{pool}^*}) = \mathbb{V}(\hat{\tau}^{\text{fed}^*}) < \mathbb{V}(\hat{\tau}^{\text{meta}^*})$ if heterogeneous e_k 's, equality if homogeneous

⇒ Federated estimators should always be preferred over meta-analysis when no communication constraints.

Federated Estimators

Propensity Score Estimation in Practice

The propensity score in the pooled dataset decomposes as $e(x) = \sum_{k=1}^{K} \omega_k(x) e_k(x)$ with $\omega_k(x) = \mathbb{P}(H_i = k \mid X_i = x)$ the federation weights. Then, to estimate e:

The propensity score in the pooled dataset decomposes as $e(x) = \sum_{k=1}^{K} \omega_k(x) e_k(x)$ with $\omega_k(x) = \mathbb{P}(H_i = k \mid X_i = x)$ the federation weights. Then, to estimate e:

• e_k 's: locally estimated with any (non-)parametric method (logistic, generalized random forests [Athey et al., 2019], etc.) \rightarrow flexible, handles treatment allocation heterogeneity

The propensity score in the pooled dataset decomposes as $e(x) = \sum_{k=1}^{K} \omega_k(x) e_k(x)$ with $\omega_k(x) = \mathbb{P}(H_i = k \mid X_i = x)$ the federation weights. Then, to estimate e:

- e_k 's: locally estimated with any (non-)parametric method (logistic, generalized random forests [Athey et al., 2019], etc.) \rightarrow flexible, handles treatment allocation heterogeneity
- $\omega_k(x)$'s: two approaches

The propensity score in the pooled dataset decomposes as $e(x) = \sum_{k=1}^{K} \omega_k(x) e_k(x)$ with $\omega_k(x) = \mathbb{P}(H_i = k \mid X_i = x)$ the federation weights. Then, to estimate e:

- e_k 's: locally estimated with any (non-)parametric method (logistic, generalized random forests [Athey et al., 2019], etc.) \rightarrow flexible, handles treatment allocation heterogeneity
- $\omega_k(x)$'s: two approaches
 - Membership Weights (MW): $H \mid X$

$$\omega_k(x) = \mathbb{P}(H_i = k \mid X_i = x)$$

 $\rightarrow \mbox{ estimate with a federated probabilitic classifier (logistic regression, neural networks...)}$

The propensity score in the pooled dataset decomposes as $e(x) = \sum_{k=1}^{K} \omega_k(x) e_k(x)$ with $\omega_k(x) = \mathbb{P}(H_i = k \mid X_i = x)$ the federation weights. Then, to estimate e:

- e_k 's: locally estimated with any (non-)parametric method (logistic, generalized random forests [Athey et al., 2019], etc.) \rightarrow flexible, handles treatment allocation heterogeneity
- $\omega_k(x)$'s: two approaches
 - Membership Weights (MW): $H \mid X$

$$\omega_k(x) = \mathbb{P}(H_i = k \mid X_i = x)$$

- ightarrow estimate with a federated probabilitic classifier (logistic regression, neural networks...)
- Density Ratio Weights (DW): X | H

$$\omega_k(x) = \mathbb{P}(H_i = k) \frac{\mathbb{P}(X_i = x \mid H_i = k)}{\mathbb{P}(X_i = x)} = \rho_k \frac{f_k(x)}{f(x)}$$

 \rightarrow estimate f_k by parametric density estimation (e.g., Gaussian Mixture Models) at site k and global density by $f(x) = \sum_{k=1}^{K} \rho_k f_k(x)$ with $\rho_k = \mathbb{P}(H_i = k)$

The propensity score in the pooled dataset decomposes as $e(x) = \sum_{k=1}^{K} \omega_k(x) e_k(x)$ with $\omega_k(x) = \mathbb{P}(H_i = k \mid X_i = x)$ the federation weights. Then, to estimate e:

	MW	DW
	$\mathbb{P}(H_i = k \mid X_i)$	$\frac{\rho_k f_k(X_i)}{f(X_i)}$
Flexible / non-parametric	\checkmark	X
Comm. rounds	Т	1
Comm. cost	O(TKd)	$O(Kd^2)$
Scales to high d	✓	X

$$\hat{\omega}_k(x) = \mathbb{P}_{\hat{\boldsymbol{\theta}}}(H_i = k \mid X_i = x)$$

Algorithm FedAvg (server-side)

initialize global model parameters θ_0 for each round t=1 to T do

for each client $k \in K$ in parallel do $\theta_k \leftarrow \text{CLIENTUPDATE}(k, \theta)$ $\theta \leftarrow \sum_{k \in K} \frac{n_k}{n_k} \theta_k$ // FedAvg

$$\begin{array}{l} \theta^{(k)} \leftarrow \theta \\ \textbf{for local step } e = 1 \text{ to } E \text{ do} \\ \mathcal{B}_k \leftarrow \text{mini-batch of } B \text{ samples from } \mathcal{D}_k \\ \text{compute } \nabla_{\theta} \mathcal{L}(\theta^{(k)}; \mathcal{B}_k) \\ \text{update } \theta^{(k)} \leftarrow \theta^{(k)} - \eta \nabla_{\theta} \mathcal{L}(\theta^{(k)}; \mathcal{B}_k) \\ \text{return } \theta^{(k)} \text{ to server} \end{array}$$

$$\hat{\omega}_k(x) = \mathbb{P}_{\hat{\boldsymbol{\theta}}}(H_i = k \mid X_i = x)$$

initialize model

Algorithm FedAvg (server-side)

initialize global model parameters $heta_0$

for each round t = 1 to T **do**

for each client $k \in K$ in parallel do

$$\theta_k \leftarrow \text{CLIENTUPDATE}(k, \theta)$$

$$\theta \leftarrow \sum_{k \in K} \frac{n_k}{n} \theta_k$$
 // FedAvg

Algorithm CLIENTUPDATE (k, θ)

$$\theta^{(k)} \leftarrow \theta$$

for local step e=1 to E do $\mathcal{B}_k \leftarrow \text{mini-batch of } B \text{ samples from } \mathcal{D}_k$ compute $\nabla_{\theta} \mathcal{L}(\theta^{(k)}; \mathcal{B}_k)$ update $\theta^{(k)} \leftarrow \theta^{(k)} - \eta \nabla_{\theta} \mathcal{L}(\theta^{(k)}; \mathcal{B}_k)$ return $\theta^{(k)}$ to server

$$\hat{\omega}_k(x) = \mathbb{P}_{\hat{\boldsymbol{\theta}}}(H_i = k \mid X_i = x)$$

each party makes an update using its local dataset

Algorithm FedAvg (server-side)

initialize global model parameters θ_0 for each round t=1 to T do

for each client $k \in K$ in parallel do $\theta_k \leftarrow \text{CLIENTUPDATE}(k, \theta)$ $\theta \leftarrow \sum_{k \in K} \frac{n_k}{n} \theta_k$ // FedAvg

$$\begin{array}{l} \theta^{(k)} \leftarrow \theta \\ \textbf{for} \text{ local step } e = 1 \text{ to } E \text{ do} \\ \mathcal{B}_k \leftarrow \text{mini-batch of } B \text{ samples from } \mathcal{D}_k \\ \text{compute } \nabla_{\theta} \mathcal{L}(\theta^{(k)}; \mathcal{B}_k) \\ \text{update } \theta^{(k)} \leftarrow \theta^{(k)} - \eta \nabla_{\theta} \mathcal{L}(\theta^{(k)}; \mathcal{B}_k) \\ \text{return } \theta^{(k)} \text{ to server} \end{array}$$

$$\hat{\omega}_k(x) = \mathbb{P}_{\hat{\theta}}(H_i = k \mid X_i = x)$$

Algorithm FedAvg (server-side)

initialize global model parameters θ_0 for each round t=1 to T do for each client $k \in K$ in parallel do $\theta_k \leftarrow \text{CLIENTUPDATE}(k, \theta)$ $\theta \leftarrow \sum_{k \in K} \frac{n_k}{n_k} \theta_k$ // FedAvg

$$\theta^{(k)} \leftarrow \theta$$
for local step $e = 1$ to E **do**
 $\mathcal{B}_k \leftarrow \text{mini-batch of } B \text{ samples from } \mathcal{D}_k$

compute $\nabla_{\theta} \mathcal{L}(\theta^{(k)}; \mathcal{B}_k)$

update $\theta^{(k)} \leftarrow \theta^{(k)} - \eta \nabla_{\theta} \mathcal{L}(\theta^{(k)}; \mathcal{B}_k)$

return $\theta^{(k)}$ to server

$$\hat{\omega}_k(x) = \mathbb{P}_{\hat{\boldsymbol{\theta}}}(H_i = k \mid X_i = x)$$

Algorithm FedAvg (server-side)

initialize global model parameters θ_0 for each round t=1 to T do for each client $k \in K$ in parallel do $\theta_k \leftarrow \text{CLIENTUPDATE}(k, \theta)$ $\theta \leftarrow \sum_{k \in K} \frac{n_k}{n_k} \theta_k$ // FedAvg

$$\begin{array}{l} \theta^{(k)} \leftarrow \theta \\ \text{for local step } e = 1 \text{ to } E \text{ do} \\ \mathcal{B}_k \leftarrow \text{mini-batch of } B \text{ samples from } \mathcal{D}_k \\ \text{compute } \nabla_{\theta} \mathcal{L}(\theta^{(k)}; \mathcal{B}_k) \\ \text{update } \theta^{(k)} \leftarrow \theta^{(k)} - \eta \nabla_{\theta} \mathcal{L}(\theta^{(k)}; \mathcal{B}_k) \\ \text{return } \theta^{(k)} \text{ to server} \end{array}$$

$$\hat{\omega}_k(x) = \mathbb{P}_{\hat{\boldsymbol{\theta}}}(H_i = k \mid X_i = x)$$

parties update their copy of the model and iterate

Algorithm FedAvg (server-side)

initialize global model parameters θ_0 for each round t=1 to T do for each client $k\in K$ in parallel do

$$\begin{array}{l} \theta_k \leftarrow \text{CLIENTUPDATE}(k,\theta) \\ \theta \leftarrow \sum_{k \in K} \frac{n_k}{n} \theta_k \end{array} // \text{ FedAvg} \\ \end{array}$$

$$\begin{array}{l} \theta^{(k)} \leftarrow \theta \\ \textbf{for local step } e = 1 \text{ to } E \text{ do} \\ \mathcal{B}_k \leftarrow \text{mini-batch of } B \text{ samples from } \mathcal{D}_k \\ \text{compute } \nabla_{\theta} \mathcal{L}(\theta^{(k)}; \mathcal{B}_k) \\ \text{update } \theta^{(k)} \leftarrow \theta^{(k)} - \eta \nabla_{\theta} \mathcal{L}(\theta^{(k)}; \mathcal{B}_k) \\ \text{return } \theta^{(k)} \text{ to server} \end{array}$$

- T comm. rounds: larger improves accuracy but increases comm. cost.
 Typically 100 – 1000 for deep learning models.
- E local updates: larger improves local convergence but can cause drift in heterogeneous settings.
 1 – 5 works well.
- η learning rate: typically 0.01-0.1 for logistic regression, 0.001-0.01 for deep learning models.

Same principle to estimate global outcome models μ_1, μ_0

$\label{eq:algorithm} \begin{array}{l} \textbf{Algorithm} & \text{FedAvg (server-side)} \\ \hline \text{initialize global model parameters θ_0} \\ \textbf{for each round $t=1$ to T } \textbf{do} \\ \textbf{for each client $k \in K$ in parallel } \textbf{do} \\ \theta_k \leftarrow \text{CLIENTUPDATE}(k,\theta) \\ \theta \leftarrow \sum_{k \in K} \frac{n_k}{n} \theta_k \qquad // \text{ FedAvg} \end{array}$

$\theta^{(k)} \leftarrow \theta$ for local step e = 1 to F do

$$\begin{split} & \textbf{for local step } e = 1 \text{ to } E \text{ do} \\ & \mathcal{B}_k \leftarrow \text{mini-batch of } B \text{ samples from } \mathcal{D}_k \\ & \text{compute } \nabla_{\theta} \mathcal{L}(\theta^{(k)}; \mathcal{B}_k) \\ & \text{update } \theta^{(k)} \leftarrow \theta^{(k)} - \eta \nabla_{\theta} \mathcal{L}(\theta^{(k)}; \mathcal{B}_k) \\ & \text{return } \theta^{(k)} \text{ to server} \end{split}$$

Multi-site estimators: summary

Meta-Analysis

15

Multi-site estimators: summary

• Meta requires local overlap, federated estimators just global overlap.

Multi-site estimators: summary

• Meta requires local overlap, federated estimators just global overlap.

Numerical illustration

- K = 3 sites, d = 10, $n_k = 500$
- Non-linear μ_1, μ_0 estimated with misspecified federated linear regression \rightarrow double robustness of Fed-AIPW
- $e_k(x) = \text{Logistic}(\gamma_k, x)$
- MW: Federated logistics, do not work well with $\neq \Sigma_k$'s
- No local overlap: $e_2(x) = 0$ site 2 is an external control arm \rightarrow no meta-analysis

DGP X|H

$$X \mid H = k \sim \mathcal{N}(\mu_k, \Sigma_k)$$

DGP H|X

$$\mathbb{P}(H = k \mid X) = \text{Logistic}(\theta_k, X)$$

AIPW ••• True ATE

Numerical illustration

- K = 3 sites, d = 10, $n_k = 500$
- Non-linear μ_1, μ_0 estimated with misspecified federated linear regression \rightarrow double robustness of Fed-AIPW
- $e_k(x) = \text{Logistic}(\gamma_k, x)$
- MW: Federated logistics, do not work well with $\neq \Sigma_k$'s
- Poor local overlap: $||\gamma_2||_1$ is large $\rightarrow e_2(x)$ close to 0 for some x's

DGP X|H

$$X \mid H = k \sim \mathcal{N}(\mu_k, \Sigma_k)$$

DGP H|X

$$\mathbb{P}(H = k \mid X) = \text{Logistic}(\theta_k, X)$$

Centralized Oracle

Fed-DW

Numerical illustration

- K = 3 sites, d = 10, $n_k = 500$
- Non-linear μ_1, μ_0 estimated with misspecified federated linear regression \rightarrow double robustness of Fed-AIPW
- $e_k(x) = \text{Logistic}(\gamma_k, x)$
- MW: Federated logistics, do not work well with $\neq \Sigma_k$'s
- Good local overlaps: all \mathcal{O}_k 's are small and close to $\mathcal{O}_{\mathrm{global}}$.

DGP X|H

$$X \mid H = k \sim \mathcal{N}(\mu_k, \Sigma_k)$$

DGP H|X

$$\mathbb{P}(H = k \mid X) = \text{Logistic}(\theta_k, X)$$

Centralized Oracle

Fed-DW

Conclusion

Limits of our approach:

- MW vs. DW: MW with Neural Networks always works but requires more local data
- Cross-silos setting:
 - small K since number of federation weights' parameters grows with K
 - large n_k to estimate e_k 's, outcome models, membership probabilities/density parameters

Perspectives:

- Handle centre effects beyond parametric modelling of e(X, H)
- Handle covariate mismatch across sources
- Consider non-collapsible measures (e.g., odd-ratios)
- Provide robust privacy guarantees (differential privacy)

Thank you for your attention!
Questions?

References i

- [Athey et al., 2019] Athey, S., Tibshirani, J., and Wager, S. (2019). Generalized random forests.
- [Guo et al., 2024] Guo, T., Karimireddy, S. P., and Jordan, M. I. (2024). Collaborative heterogeneous causal inference beyond meta-analysis. arXiv preprint arXiv:2404.15746
- [Han et al., 2021] Han, L., Hou, J., Cho, K., Duan, R., and Cai, T. (2021). Federated adaptive causal estimation (face) of target treatment effects. arXiv preprint arXiv:2112.09313.
- [Han et al., 2023] Han, L., Shen, Z., and Zubizarreta, J. R. (2023).
 - Multiply robust federated estimation of targeted average treatment effects.
 - In Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., and Levine, S., editors, *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 16, 2023.*
- [Kairouz et al., 2021] Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al. (2021).
 - Advances and open problems in federated learning.

Foundations and trends® in machine learning, 14(1–2):1–210.

References ii

```
[Makhija et al., 2024] Makhija, D., Ghosh, J., and Kim, Y. (2024).
Federated learning for estimating heterogeneous treatment effects.
CoRR, abs/2402.17705.
```

[Vo et al., 2022a] Vo, T. V., Bhattacharyya, A., Lee, Y., and Leong, T.-Y. (2022a).
An adaptive kernel approach to federated learning of heterogeneous causal effects.
Advances in Neural Information Processing Systems, 35:24459–24473.

[Vo et al., 2022b] Vo, T. V., Lee, Y., Hoang, T. N., and Leong, T.-Y. (2022b). Bayesian federated estimation of causal effects from observational data. In UAI.

[Xiong et al., 2023] Xiong, R., Koenecke, A., Powell, M., Shen, Z., Vogelstein, J. T., and Athey, S. (2023).
Federated causal inference in heterogeneous observational data.
Statistics in Medicine, 42(24):4418–4439.