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Motivation



Federated Causal Inference beyond Meta-Analysis

• Goal of causal inference: measure the (average) impact of a treatment on an outcome

• Medical studies: impact of vaccination on Covid-19 outbreaks? (Moghadas et al., 2021)

• Economics and social sciences: impact of studies on future earnings in developing countries?

(Duflo, Glennerster, and Kremer, 2007)

• Public Health & Economy: evaluating drugs efficacy. French social security reimburses drugs

based on their proven efficacy. (French Health Authority, 2024)

• Physics, marketing...

• Experimental method: randomized clinical trials (RCTs) are the gold standard

• Multisource framework: meta-analysis on summary statistics as the top of the pyramid of

evidence

• Our contribution: leverage federated learning (FL) to perform causal inference on

decentralized invidividual data
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Introduction to Causal Inference



Usual Causal Framework - RCT

• Causal inference goal: estimate the (average) impact of

treatment W on Y , given X describing a population.

• Data is centralized:

Obs. Covariates Treatment Outcome Potential Outcomes

i X1 X2 X3 W Y Y (1) Y (0)

1 2.3 1.5 M 1 3.2 3.2 ??

2 2.2 3.1 F 0 2.8 ?? 2.8

3 3.5 2.0 F 1 2.1 2.1 ??

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

n − 1 3.7 2.0 F 0 2.8 ?? 2.8

n 2.5 1.7 M 1 3.2 3.2 ??

Main Motivation: V(τ̂OLS) ≤ V(τ̂DM) even when µ1 and µ0 are not linear functions!
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µ̂1(Xi )− µ̂0(Xi )

)
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n
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(
Xi β̂
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)
with β̂(w) the OLS regressor learned

on individuals with W = w .

Refs.: U.S. Food and Drug Administration, 2023, European

Medicines Agency, 2024, Tsiatis et al., 2008, Benkeser et al.,

2021, Lin, 2013, Wager, 2020, Lei and Ding, 2021,

Van Lancker, Bretz, and Dukes, 2024
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Multisource Causal Framework

• Multisource inference goal: estimate the impact of W on Y

given X describing a population, split across K studies.

• Data is decentralized:

Source Obs. Covariates Treatment Outcomes

H i X1 X2 X3 W Y

1 1 2.3 1.5 M 1 3.2

1 2 2.2 3.1 F 0 2.8

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

2 1 4.5 5.0 F 1 4.1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

K 1 3.7 2.0 F 0 2.8

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

K nK 2.5 1.7 M 0 3.2

Heterogeneity in center effects

W

X

Y

H

ATE:

τ = E
(

E
(
Y (1) − Y (0) | H

))
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Heterogeneity in treatment
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1 2 2.2 3.1 F 0 2.8 h1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2 1 4.5 5.0 F 1 4.1 h2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

K 1 3.7 2.0 F 0 2.8 h3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

K nK 2.5 1.7 M 0 3.2 h3

Heterogeneity in center effects

W

X

Y

H

ATE:

τ = E
(

E
(
Y (1) − Y (0) | H

))
→ How to estimate τ?
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Federated Causal Inferences: estimation strategies

k = 1 τ̂1

k = 2 τ̂2

...

k = K τ̂K

Global estimates of the treatment
effect:

• Meta-analysis: average-weighted

aggregation of local estimates

→ τ̂ =
∑K

k=1 wk τ̂k
• Federated estimation:

a. Learn the parameters for the outcome

and/or propensity score models

b. Build a global estimate τ̂ from these

models (e.g., G-Formula, IPW, AIPW).

4 / 16



Federated Causal Inferences: estimation strategies

k = 1 τ̂1

k = 2 τ̂2

...

k = K τ̂K

Global estimates of the treatment
effect:

• Meta-analysis: average-weighted

aggregation of local estimates

→ τ̂ =
∑K

k=1 wk τ̂k
• Federated estimation:

a. Learn the parameters for the outcome

and/or propensity score models

b. Build a global estimate τ̂ from these

models (e.g., G-Formula, IPW, AIPW).

4 / 16



Federated Causal Inferences: estimation strategies

k = 1 τ̂1

k = 2 τ̂2

...

k = K τ̂K

Global estimates of the treatment
effect:

• Meta-analysis: average-weighted

aggregation of local estimates

→ τ̂ =
∑K

k=1 wk τ̂k

• Federated estimation:

a. Learn the parameters for the outcome

and/or propensity score models

b. Build a global estimate τ̂ from these

models (e.g., G-Formula, IPW, AIPW).

4 / 16



Federated Causal Inferences: estimation strategies

k = 1 τ̂1

k = 2 τ̂2

...

k = K τ̂K

Global estimates of the treatment
effect:

• Meta-analysis: average-weighted

aggregation of local estimates

→ τ̂ =
∑K

k=1 wk τ̂k
• Federated estimation:

a. Learn the parameters for the outcome

and/or propensity score models

b. Build a global estimate τ̂ from these

models (e.g., G-Formula, IPW, AIPW).

4 / 16



Federated Causal Inferences: estimation strategies

k = 1 τ̂1

k = 2 τ̂2

...

k = K τ̂K

Global estimates of the treatment
effect:

• Meta-analysis: average-weighted

aggregation of local estimates

→ τ̂ =
∑K

k=1 wk τ̂k
• Federated estimation:

a. Learn the parameters for the outcome

and/or propensity score models

b. Build a global estimate τ̂ from these

models (e.g., G-Formula, IPW, AIPW).

4 / 16



Federated Causal Inferences: estimation strategies

k = 1 τ̂1

k = 2 τ̂2

...

k = K τ̂K

Global estimates of the treatment
effect:

• Meta-analysis: average-weighted

aggregation of local estimates

→ τ̂ =
∑K

k=1 wk τ̂k
• Federated estimation:

a. Learn the parameters for the outcome

and/or propensity score models

b. Build a global estimate τ̂ from these

models (e.g., G-Formula, IPW, AIPW).

4 / 16



Multi-sources ATE Estimation



Federated ATE estimation in linear outcome modelling

• Denote X
(w)
k (resp. Y

(w)
k ) the covariates matrix (resp. outcome vector) of study k under

treatment arm w

• Linear outcome model: ∀k,Y (w)
k,i = c(w) + Xk,iβ

(w) + ε
(w)
k,i with w ∈ {0, 1}.

→ Goal: estimate τ := E
(

E(Y (1)
i − Y

(0)
i | Hi )

)
= c(1) − c(0) + E(E(Xi | Hi ))(β

(1) − β(0)).

→ Problem: we do not have access to the pooled dataset !

→ Need to consider other estimation strategies for τ̂ .
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Meta vs. (One Shot) Federated G-Formula

Meta G-Formula One-Shot Fed. G-Formula Fed. G-Formula

2. Estimate Local 
ATEs  { ̂τk}1,..,K

3. Aggregate the 
 to get { ̂τk}1,..,K ̂τ

1. Estimate Model 
Parameters

K local OLS regressions

̂θ(w)
1

…
̂θ(w)
K

̂τ1

̂τk := 1
nk

nk

∑
i=1

X′ k,i( ̂θ(1)
k − ̂θ(0)

k )

̂τK…

̂τmeta =
K

∑
k=1

ω(τ) ̂τk
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K
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Comparison of the Estimators

Homogeneous setting



Asymptotic Variances

Homogeneous population setting:

W

X

YH

Figure 1: Graphical model: K RCTs

=⇒ ∀{k, i},Wk,i ∼ B(pk), different
treatment allocation schemes.
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Asymptotic Variances

Under an Homogeneous setting, all estimators are unbiased and:

Estimator Notation V∞ Com. rounds Com. cost

Meta-SW τ̂Meta-SW
σ2

n

K∑
k=1

ρk

pk (1 − pk )
+

1

n
∥β(1)−β

(0)∥2Σ 1 O(1)

Meta-IVW τ̂Meta-IVW

( K∑
k=1

(
σ
2 nρk

pk (1 − pk )
+

1

nk

∥β(1)−β
(0)∥2Σ

)−1
)−1 1 O(1)

1S-SW τ̂1S-SW Vpool 2 O(d)

1S-IVW τ̂1S-IVW Vpool 2 O(d2)

GD τ̂GD Vpool T + 1 O(Td)

Pool τ̂pool Vpool =
σ2

n
1

p(1−p) + 1
n ∥β

(1) − β(0)∥2
Σ — —

with ρk := P(Hi = k) = E(nk)/n and p =
∑K

k=1
nk
n pk .
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Comparison of Variances - Homogeneous Setting

V∞(τ̂pool) = V∞(τ̂GD)

= V∞(τ̂1S−SW)

= V∞(τ̂1S−IVW)

≤ V∞(τ̂Meta−IVW)

{

= if same {pk}k ,
< if different {pk}k

≤ V∞(τ̂Meta−SW)

{

= if same {pk(1− pk)}k ,
< if different {pk(1− pk)}k
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Comparison of Variances - Homogeneous Setting

Parameters: d = 10,K = 5

Large Small

{nk}k = 100 ∗ d , 3 studies have

pk = 0.9, 2 have pk = 0.1

{nk}k = 5 ∗ d , 3 studies have pk = 0.65,

2 have pk = 0.35
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Comparison of the Estimators

Heterogeneous Distributions



Comparison of Variances - Heterogeneity in X

Distributional Shift:

H ̸⊥⊥ X =⇒ Dk ̸= Dl =⇒ τk ̸= τl

Figure 1: Graphical model for the heterogeneous distributions setting.

W

X

Y

H

τ =
∑K

k=1 ρkτk with ρk = E
(
nk
n

)
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Figure 1: Graphical model for the heterogeneous distributions setting.

W

X

Y

H

τ =
∑K

k=1 ρkτk with ρk = E
(
nk
n

)
• τ̂meta−IVW =

∑K
k=1 V(τ̂k )

−1τ̂k∑K
l=1 V(τ̂l )−1 is biased: inverse variance weights do not aim at the {ρk}s.

• V∞(τ̂1S−SW) is impacted by the different means {µk}k .
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Comparison of Variances - Heterogeneity in X

∀k ,Xk ∼ N (µk ,Σk)
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Comparison of the Estimators

Presence of Center Effects



Comparison of Variances - Heterogeneity through Center Effects

Presence of a constant (real-valued) effect of the center k onto the outcome Y :

Y
(w)
k,i = c(w) + hk + Xk,iβ

(w) + εi (w)

Properties:

• All federated estimators are biased and need to be adjusted except the metas which

naturally account for the center effects.

Adjustment:

• Adjusted One-Shot estimators: share and aggregate only the covariates coefficients β̂k ,

while keeping the intercepts local

• Adjusted Gradient Descent: add H variable into the datasets.
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Caution: H is now a confounder!
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Comparison of Variances - Heterogeneity through Center Effects

(h1, h2, h3, h4, h5) = (1, .2,−1, 30, 2) and different pk
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Full Heterogeneity

Fully heterogeneous setting, realistic:

W

X

Y

H
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Full Heterogeneity
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Federated Causal Inferences: challenges

Meta-Analysis One-Shot FL Learning GD FL

+ • Easy to implement

• Private and low communications: 1

round

• Shares only summary statistics:

• Locally estimated ATEs {τ̂k}
• Sample sizes {nk} or estimated

variances {V̂ (τ̂k )}

• Easy to implement

• Private and low communications: 2

rounds

• Shares summary statistics:

• Sample sizes {nk} or empirical

variance-covariance matrices

{Σ̂k} (can be costly when d is

large)

• Locally estimated ATEs with

One-Shot federated outcome

models {τ̂1S
k }

• Flexible: (non-)parametric models,

estimate function τ(X )

• Robust to locally small sample sizes

(n
(w)
k

< d)

• Robust to different treatment schemes

• Private: using secure aggregation or

differential privacy

• Accurate: learn from the pool dataset as

if it was centralized

- • Sensitive to imbalance in sample sizes

• No access to individual data: cannot

detect and qualify heterogeneity

• The aggregation with lowest variance

(IVW) yields a biased estimate under

heterogeneity in distributions

• Not designed for heterogeneous settings • Harder to implement in practice

• Heavy computations: compute ∇f (θ̂)

at each round
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Perspectives

• Extend this work to observational studies.

• Quantify the bias and variances of the estimators in finite sample sizes settings.

• Non-parametric and non-linear approaches: federated random forests, neural networks,

etc.

• Apply the Differential-Privacy framework to federated causal inferences.

14 / 16



Scan my paper!

Thank you!
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