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Federated Causal Inference beyond Meta-Analysis

e Goal of causal inference: measure the (average) impact of a treatment on an outcome
e Medical studies: impact of vaccination on Covid-19 outbreaks? (Moghadas et al., 2021)
e Economics and social sciences: impact of studies on future earnings in developing countries?

(Duflo, Glennerster, and Kremer, 2007)
e Public Health & Economy: evaluating drugs efficacy. French social security reimburses drugs

based on their proven efficacy. (French Health Authority, 2024)
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Federated Causal Inference beyond Meta-Analysis

e Goal of causal inference: measure the (average) impact of a treatment on an outcome
e Experimental method: randomized clinical trials (RCTs) are the gold standard

e Randomization of treatment assignment disentangles correlation from causation: differences
in outcomes are attributable to the treatment only rather than confounding factors

e Limits: expensive, not always feasible, stringent eligibility criteria, short timeframes, small
sample sizes

— Multisource approach: several RCTs are better than 1!
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Federated Causal Inference beyond Meta-Analysis

e Goal of causal inference: measure the (average) impact of a treatment on an outcome
e Experimental method: randomized clinical trials (RCTs) are the gold standard

e Multisource framework: meta-analysis on summary statistics as the top of the pyramid of
evidence

Systematic
reviews &
meta-analyses

RCTs
Cohort studies
Case control studies
Case series

Case reports

Ideas, editorials, opinion
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Animal research

In vitro research
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e Goal of causal inference: measure the (average) impact of a treatment on an outcome

e Experimental method: randomized clinical trials (RCTs) are the gold standard

e Multisource framework: meta-analysis on summary statistics as the top of the pyramid of

evidence
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Federated Causal Inference beyond Meta-Analysis

e Goal of causal inference: measure the (average) impact of a treatment on an outcome
e Experimental method: randomized clinical trials (RCTs) are the gold standard
e Multisource framework: meta-analysis on summary statistics as the top of the pyramid of
evidence
e Aggregates estimated causal effects from published summary statistics of multiple studies
e Increased statistical power and more precise estir

o Keeps the data decentralized

Study
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Federated Causal Inference beyond Meta-Analysis

e Goal of causal inference: measure the (average) impact of a treatment on an outcome
e Experimental method: randomized clinical trials (RCTs) are the gold standard

e Multisource framework: meta-analysis on summary statistics as the top of the pyramid of
evidence

e Aggregates estimated causal effects from published summary statistics of multiple studies
e Increased statistical power and more precise estimates
o Keeps the data decentralized

e Limits: no direct access of individual observations = face important challenges in
presence of heterogeneity between the studies
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Federated Causal Inference beyond Meta-Analysis

Goal of causal inference: measure the (average) impact of a treatment on an outcome

e Experimental method: randomized clinical trials (RCTs) are the gold standard

Multisource framework: meta-analysis on summary statistics as the top of the pyramid of

evidence

Our contribution: leverage federated learning (FL) to perform causal inference on
decentralized invidividual data

;@ zas
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Federated Causal Inference beyond Meta-Analysis

Goal of causal inference: measure the (average) impact of a treatment on an outcome

e Experimental method: randomized clinical trials (RCTs) are the gold standard

e Multisource framework: meta-analysis on summary statistics as the top of the pyramid of
evidence
e Our contribution: leverage federated learning (FL) to perform causal inference on

decentralized invidividual data
e Propose the Gradient Descent Federated estimator of the Average Treatment Effect (ATE)
e Study and compare (bias and asymptotic variances) Meta-Analysis, One-Shot federated and
Gradient Descent federated estimators of ATE
e Compare their robustness to several heterogeneity scenarios
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Introduction to Causal Inference



Usual Causal Framework - RCT

o Causal inference goal: estimate the (average) impact of
treatment W on Y, given X describing a population.
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Obs. Covariates Treatment Outcome Potential Outcomes
i % 5% 5% w Y H y® y©
1 2.3 15 M 1 3.2 3.2 7
2 2.2 3.1 F 0 2.8 7 2.8
3 35 2.0 F 1 2.1 2.1 7”7
n—1 3.7 2.0 E 0 2.8 7 2.8
n 2.5 1.7 M 1 3.2 3.2 7
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Usual Causal Framework - RCT

o Causal inference goal: estimate the (average) impact of
treatment W on Y, given X describing a population.

e Data is centralized: Average Treatment Effect (ATE)
Obs. Covariates Treatment Outcome Potential Outcomes
measured as a risk difference:
i % 5% % w Y H y@® y(©
T =E(Yi(1) - Yi(0))

1 23 15 M 1 3.2 3.2 77

2 22 31 F 0 2.8 77 238

3 35 20 F 1 2.1 2.1 77
n—1 37 20 F 0 2.8 27 2.8

n 25 1.7 M 1 3.2 3.2 77

2/16



Usual Causal Framework - R

o Causal inference goal: estimate the (average) impact of
treatment W on Y, given X describing a population.

e Data is centralized: Average Treatment Effect (ATE)
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PX X X % Y H y® v©
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1 2.3 15 M 1 3.2 3.2 7
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Usual Causal Framework - RCT

o Causal inference goal: estimate the (average) impact of
treatment W on Y, given X describing a population.

e Data is centralized:

Obs. Covariates Treatment Outcome Potential Outcomes
i % 5% 5% w Y H y® y©
1 2.3 15 M 1 3.2 3.2 7
2 2.2 3.1 F 0 2.8 7 2.8
3 35 2.0 F 1 2.1 2.1 7”7
n—1 3.7 2.0 E 0 2.8 7 2.8
n 2.5 1.7 M 1 3.2 3.2 7

(a) Unconfoundedness: W; 1L {Y;(1), Y;(0)}
RCTs: W; ~B(p;)), = W, 1L X;

Average Treatment Effect (ATE)

measured as a risk difference:
T =E(Y;(1) - Yi(0))
=E(E(Yi(1) | Xi) — E(Y;(0) | X))
=E(E(Yi(1) | W; = 1,X)
—E(Yi(0) | Wi =0,X)) (a)
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Usual Causal Framework - RCT

o Causal inference goal: estimate the (average) impact of

treatment W on Y, given X describing a population.

o Data is centralized: Average Treatment Effect (ATE)

Obs. Covariates Treatment  Outcome  Potential Outcomes measured as a risk difference:

i Xi X% X w 4 H y® y© ‘ T =E(Yi(1) - Yi(0))

1 23 15 M 1 3.2 3.2 7 =E(E(Yi(1) | X;) = E(Yi(0) | X;))

2 22 31 F 0 2.8 7 2.8 =EE(Yi(1) Wi =1,X)

3 35 20 F 1 21 2.1 7 —E(Yi(0)|W;=0,X)) ()

—EE(Y) | Wi = 1,X)
—E(Y; | W;=0,X)) (b)

n—1 3.7 2.0 E 0 2.8 7 2.8

n 25 1.7 M 1 3.2 3.2 7

(b) Consistency: Y; = W;Y;(1) + (1 — W;)Y:(0)
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o Causal inference goal: estimate the (average) impact of
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e Data is centralized:

Obs. Covariates Treatment Outcome Potential Outcomes a e A
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i ©) (0) . .
! X X w Y H Y Y e Difference-in-Means:
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Usual Causal Framework - RCT

o Causal inference goal: estimate the (average) impact of
treatment W on Y, given X describing a population.

e Data is centralized:

Obs. Covariates Treatment ~ Outcome  Potential Outcomes Unbiased ATE estimation:
i X1 X X3 w Y H y® y© e Difference-in-Means:
1 23 15 M 1 3.2 24 oM = Yiw=1 — Yjw=o
2 22 31 F 0 28 8 e Covariate-adjusted G-Formula:
% 35 20 F 1 2.1 21 fe=13" — fio(X7))
n—1 37 20 F 0 2.8 2.8
n 25 17 M 1 3.2 2.9
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o Causal inference goal: estimate the (average) impact of
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e Data is centralized:

Obs. Covariates Treatment ~ Outcome  Potential Outcomes Unbiased ATE estimation:

i X1 X X3 w Y H y® y© e Difference-in-Means:

1 23 15 M 1 3.2 24 oM = Yiw=1 — Yjw=o

2 22 31 F 0 2.8 8 e Linearly-adjusted G-Formula:

3 35 20 F 1 2.1 21 FoLs = %27:1 ( _ X,.Q(O))
n—1 37 20 F 0 2.8 2.8
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Usual Causal Framework - RCT

o Causal inference goal: estimate the (average) impact of

treatment W on Y/, given X describing a population. Unbiased ATE estimation:
e Data is centralized: e Difference-in-Means:
Obs. Covariates Treatment QOutcome Potential Outcomes 7,lDM = Y|W:1 - Y\W:O
; X X% X W » H v vO e Linearly-adjusted G-Formula:
fors = 5 Xi ( — X;5)
! 23 15 M . 3.2 32 ?? with B(W) the OLS regressor learned
a2 a3 & [ 0 28 [ 28 on individuals with W = w.
3 3.5 2.0 F 1 2.1 2.1 ” Refs.: U.S. Food and Drug Administration, 2023, European
Medicines Agency, 2024, Tsiatis et al., 2008, Benkeser et al.,
n—1 37 20 B 0 28 27 28 2021, Lin, 2013, Wager, 2020, Lei and Ding, 2021,
n 25 17 M 1 3.2 3.2 77 Van Lancker, Bretz, and Dukes, 2024

Main Motivation: ’V(?OLS) < V(7pm) even when 1 and pg are not linear functions!
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Multisource Causal Framework

e Multisource inference goal: estimate the impact of W on Y
given X describing a population, split across K studies.

e Data is decentralized:

Source  Obs. Covariates Treatment Outcomes
’ ‘ i Xi Xa X3 w Y
1 1 23 15 M 1 3.2
1 2 2.2 3.1 H 0 2.8
2 1 4.5 5.0 F 1 4.1
K 1 3.7 20 F 0 2.8
K nkg 2.5 1.7 M 0 3.2

ATE:

r=E (E (Y(l) ~ YO H))
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Multisource Causal Framework

e Multisource inference goal: estimate the impact of W on Y

given X describing a population, split across K studies. Heterogeneity in treatment

e Data is decentralized: allocation
Source Obs. Covariates Treatment Outcomes
’ ‘ i X1 X X3 w Y H P(W)) ‘

1 1 2.3 15 M 1 3.2 P1

1 2 2.2 3.1 [ 0 2.8 pP1
@ Y

2 1 4.5 5.0 F 1 4.1 P2

ATE:

K 1 3.7 2.0 F 0 2.8 P3
r=E (E (Y(l) — YO H>)

K nk 25 17 M 0 3.2 ps

3/16



Multisource Causal Framework

e Multisource inference goal: estimate the impact of W on Y

given X describing a population, split across K studies.

e Data is decentralized:

Source Obs. Covariates Treatment Outcomes
’ ‘ i X1 X> X3 w Y H D ‘
1 1 23 15 M 1 3.2 D,
1 2 2.2 3.1 [? 0 2.8 D,
2 1 4.5 5.0 F 1 4.1 D,
K 1 3.7 20 F 0 2.8 D3
K n 25 17 M 0 3.2 Ds

Heterogeneity in covariates
distribution

ATE:

r=E (E (Y(l) — YO H>)
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Multisource Causal Framework

e Multisource inference goal: estimate the impact of W on Y
given X describing a population, split across K studies.

e Data is decentralized:

Source Obs. Covariates Treatment Outcomes
’ ‘ i X1 X> X3 w Y H cste
1 1 23 15 M 1 3.2 hy
1 2 2.2 3.1 B 0 2.8 hy
2 1 4.5 5.0 F 1 4.1 hy
K 1 3.7 20 F 0 2.8 h3
K w25 17 M 0 3.2 hs

Heterogeneity in center effects

ATE:

r=E (E (Y(l) _ YO H))

— How to estimate 77
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Federated Causal Inferences: estimation strategies

k:1@ A

k=2 @ %

k:K@ P
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Federated Causal Inferences: estimation strategies

Global estimates of the treatment

= @’ & effect:
e Meta-analysis: average-weighted
aggregation of local estimates

k=2 @, T2 — 7= W

k:K@ P
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Federated Causal Inferences: estimation strategies

= R Global estimates of the treatment
k=1 @: T effect:
e Meta-analysis: average-weighted
aggregation of local estimates

k=2 @, T %%:ZkK:kafk

e Federated estimation:

k:K@ -
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Federated Causal Inferences: estimation strategies

= R Global estimates of the treatment
k= @: T effect:
e Meta-analysis: average-weighted
— aggregation of local estimates
k=2 & % S
e Federated estimation:

a. Learn the parameters for the outcome
and/or propensity score models

k:K@ P
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Federated Causal Inferences: estimation strategies

= R Global estimates of the treatment
k= @: T effect:
e Meta-analysis: average-weighted
— aggregation of local estimates
k=2 |;:/a, (! —>7A'=ZkK:1Wkﬁ<
e Federated estimation:
a. Learn the parameters for the outcome

and/or propensity score models
b. Build a global estimate 7 from these

k=K @ 2 models (e.g., G-Formula, IPW, AIPW).
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Multi-sources ATE Estimation



Federated ATE estimation in linear outcome modelling

e Denote X,EW) (resp. Y,EW)) the covariates matrix (resp. outcome vector) of study k under
treatment arm w
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Federated ATE estimation in linear outcome modelling

e Denote X,EW) (resp. Y,EW)) the covariates matrix (resp. outcome vector) of study k under

treatment arm w

e Linear outcome model: Yk, Y,E:’l'-/) =c) + X, ;8" + EE:V,-) with w € {0,1}.
— Goal: estimate 7 := E (E(Y,.(” — v Hf)) = W = O L EE(X: | H))(BD — BO).

5/ 16



Federated ATE estimation in linear outcome modelling

e Denote X" (resp. Y\*)) the covariates matrix (resp. outcome vector) of study k under
treatment arm w

o Linear outcome model: Yk, Y7 = c(™) + X, ;80 + &) with w € {0, 1}.

Local causality assumptions:

e Consistency: Vi, Y; = W,-Y,-(l) +(1- VV,-)Y,.(O)

e Positivity: Vx € X,3n >0st. n <P(W;=1|X;=x) <1—n
e Unconfoundedness: W; 1L {Y", YO} | X;, H;
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Federated ATE estimation in linear outcome modelling

e Denote X,EW) (resp. Yk(w)) the covariates matrix (resp. outcome vector) of study k under
treatment arm w

e Linear outcome model: Vk, Y,E;Y) =cW 4 X, ;8" + Eiv"/,-) with w € {0, 1}.

Regression assumptions:

o V(k,w),E(X, e(w)) =0,V (e(w) | Xk) = o2,
e Local Full Rank: rank(X,” Xi) = d
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Federated ATE estimation in linear outcome modelling

e Denote X/EW) (resp. Yk(w)) the covariates matrix (resp. outcome vector) of study k under
treatment arm w

e Linear outcome model: Vk, YIE:A,./) =cW) 4 Xk7,-[3("") + Eﬁ(v’vi) with w € {0,1}.

Pool G-Formula estimator:

_ 1 1 A A
- Z )) = ; Z X"(eélo)ol - egz))ol)

S

with Hpool = {AF()';VC))I Bé‘gil} the OLS regressor over the pooled dataset.
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e Denote X/EW) (resp. Yk(w)) the covariates matrix (resp. outcome vector) of study k under
treatment arm w

e Linear outcome model: Vk, YIE:A,./) =cW) 4 X;wﬂ("") + 5%’) with w € {0,1}.
Pool G-Formula estimator:

=3 (00 — o)) = 3 X0, —09,)

with “,)Wm = {AF()';VC))I, AI()‘Z()JI} the OLS regressor over the pooled dataset.

— Problem: we do not have access to the pooled dataset !
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Federated ATE estimation in linear outcome modelling

e Denote X/EW) (resp. Yk(w)) the covariates matrix (resp. outcome vector) of study k under
treatment arm w

e Linear outcome model: Vk, YIE:A,./) =cW) 4 X;wﬂ("") + 5%’) with w € {0,1}.

Pool G-Formula estimator:
. R . 1
P =3 (M) = po(X)) = - D X0 = 00)

with “,)Wm = {AF()';VC))I, AI()‘Z()JI} the OLS regressor over the pooled dataset.
— Problem: we do not have access to the pooled dataset !
— Need to consider other estimation strategies for 7.
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Meta vs. (One Shot) Federated G-Formula

Meta G-Formula One-Shot Fed. G-Formula Fed. G-Formula

K local OLS regressions

1. Estimate Model @, coo @,

Parameters

H(w) A(w)
& o

=@, * . ; s

2. Estimate Local —Q‘ ! N —Q‘
ATEs {7} LNV a0 g0
1L.K = ”_k ZXk,i(% ) 9;( ))
i=1

3. Aggregate the

K
{#}). xtoget et = N @,
k=1
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Meta vs. (One

ot) Federated G-

1. Estimate Model
Parameters

2. Estimate Local
ATEs {#}),.x

3. Aggregate the
(%}, xtoget?

Meta G-Formula One-Shot Fed. G-Formula Fed. G-Formula
K local OLS regressions K local OLS regressions +
Params aggregation
= ... & =6, ... 8
— — How) G
& 3 N %

J J ﬂ o= i( SO
218 7 1 \‘ @’AIS

m

- BB =\
= —ZX/ (0(1) .9(0>) —_ZX, (9(115)_6(103))
i=1
pmeta z 0%, 318 — z e
k=1 “~
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Meta vs. (One Shot) Federated G-Formula

Meta G-Formula

K local OLS regressions

1. Estimate Model EQ oo ;Q
Parameters ~ -
ow
1 K
E =
2. Estimate Local —Q ! @

ATEs {%}1,.x - _Z X, (0 - 6)

i=1

\;/

pmeta Z w(r)%k
k=1

3. Aggregate the
{%k}l,..,K toget?

One-Shot Fed. G-Formula

Fed. G-Formula

K local OLS regressions +

Params aggregation SC8
) o T communication rounds
/ K

LK
@)Ated

é(»v} - Z a )(0)‘@(».)

M/

@
\IH

AlS . 7 1 0 AGD =— () _ HO)
2l ._n—kak',w(lS)—egs)) ZXk.H 49)

NI

218 = Zw(f)ﬁs

=1

N

K
4GD — 2 cu(”ifD
k=1
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Comparison of the Estimators

Homogeneous setting



Asymptotic Variances

Homogeneous population setting:

H /V-V\ Y . _ .
N2 = V{k,i}, Wk i~ B(px), different

i treatment allocation schemes.
Flgure 1: Graphical model: K RCTs
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Asymptotic Variances

Under an Homogeneous setting, all estimators are unbiased and:

Estimator Notation V™ Com. rounds  Com. cost
K 1
Fuesw S — Pk LTy g2 1 o(1)
k=1 Pk(L = pg) n
~ K n, 1 1N —
Arestvw (D (02— g @217 g o(1)
k=1 Pkl —pK) g
F1s-5w 2 O(d)
1S-IVW F1svw 2 0(d?)
GD FeD T+1 O(Td)
7ﬁpool —_ _

with pi := P(H; = k) = E(ni)/n and p = ZkK:I o P
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Comparison of Variances - Homogeneous Setting
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Comparison of Variances - Homogeneous Setting

V> (Too0l) = V=(7cD)
= V>( )

= V™ (T1s_1vw)

< V2 ){
<V ){
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Comparison of Variances - Homogeneous Setting

= V>( )
= V= (T1s-1vw)
< Voo ){ = if same {px}«,
< v ){ = if same {px(1 — px)}«,
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Comparison of Variances - Homogeneous Setting

= V( )
= V> (f1s-1vw)
< Voo ) = if same {px}«,
< if different {px }«
< v ) = if same {px(1 — px)}«,
< if different {pk(1 — px)}«
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Comparison of Variances - Homogeneous Setting

Parameters: d = 10,K =5

Large Small
{nk}x =100 * d, 3 studies have {nk}x = 5x*d, 3 studies have p, = 0.65,
pr = 0.9, 2 have p, = 0.1 2 have p, = 0.35
~0.4 -0.4 _—
-0.6 -06 — I —
-0.8 -0.8
—10j—|—r—|_1|—|_r—|—‘%—|—f -1.0
-2 L [ [ L - -1.2
-14 -14
-16 16— . -
-18 -18 —_— .

[ pool [ meta_SW [ meta_IVW 3 1S_IvW 3 1S_swW [ GD === True Tau
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Comparison of the Estimators

Heterogeneous Distributions



Comparison of Variances - Heterogeneity in X

Distributional Shift:

HAX = Di#D) = 1w #T

Figure 1: Graphical model for the heterogeneous distributions setting.
K .
r= Zkzl PkTk With py = E (Lnk)
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Comparison of Variances - Heterogeneity in X

Distributional Shift:

HAX = Di#D) = 7 #T

Figure 1: Graphical model for the heterogeneous distributions setting.

T — Zszl PkTk With py = E (%‘)

_ Ty V()
T V(A) !

o is biased: inverse variance weights do not aim at the {p}s.
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Comparison of Variances - Heterogeneity in X

Distributional Shift:

HAX = Di#D) = 7 #T

Figure 1: Graphical model for the heterogeneous distributions setting.

T — Zszl PkTk With py = E (%‘)

_ Ty V()
T V(A) !
o Voo ) is impacted by the different means {p }«.

o is biased: inverse variance weights do not aim at the {p}s.

9/16



Comparison of Variances - Heterogeneity in X

Distributional Shift:
H,ZLX — 'Dk#/D/ — Tk757'/

Figure 1: Graphical model for the heterogeneous distributions setting.

2

_ i VE)T!

° = “ is biased: inverse variance weights do not aim at the {px}s.

S V()
o Vo( ) is impacted by the different means {ux }«.

Vo (Tpoo) =V (Tap) =V (T1s—1vw) <V( )

9/16



Comparison of ances - Heterogeneity in X

[ pool

V/ﬂXk ~ N(Mk,zk)

Large Small
2.0 2.0
15 1.5 ==
1.0 1.0 T - | T
0.0 % 0.0 l !
-05 -05 —L L4 L4
-1.0 -1.0 - -
[ meta_SW [ meta_IVW 3 1S_IVW 3 1S_SW 1 GD === True Tau
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Comparison of the Estimators

Presence of Center Effects



Comparison of Variances - Heterogeneity through Center Effects

Presence of a constant (real-valued) effect of the center k onto the outcome Y:

Yk(:’}/) = c™) + by + X, ;B + i(w)
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Comparison of Variances - Heterogeneity through Center Effects

Presence of a constant (real-valued) effect of the center k onto the outcome Y:

Yk(://"/) = C(W) +Q+ Xky,ﬂ(w) + 8,’(W)

Studies may have different baselines in individual outcomes, from varying practices or
organizational contexts (e.g. hospital specialized in oncology).

(W
Figure 1: Graphical model for the center effects setting.
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Comparison of Variances - Heterogeneity through Center Effects

Presence of a constant (real-valued) effect of the center k onto the outcome Y:

Yk(:’}’) =" 4 by + X iB™M 4 ei(w)

Studies may have different baselines in individual outcomes, from varying practices or
organizational contexts (e.g. hospital specialized in oncology).

(W
Figure 1: Graphical model for the center effects setting.

Caution: H is now a confounder!
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Comparison of Variances - Heterogeneity through Center Effects

Presence of a constant (real-valued) effect of the center k onto the outcome Y:
Y = ¢ 4 b+ X iBM) + ei(w)
Properties:

o All federated estimators are biased and need to be adjusted except the metas which
naturally account for the center effects.
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Comparison of Variances - Heterogeneity through Center Effects

Presence of a constant (real-valued) effect of the center k onto the outcome Y:
Y = ¢ 4 b+ X iBM) + ei(w)
Properties:

o All federated estimators are biased and need to be adjusted except the metas which
naturally account for the center effects.

Adjustment:

e Adjusted One-Shot estimators: share and aggregate only the covariates coefficients B,
while keeping the intercepts local

e Adjusted Gradient Descent: add H variable into the datasets.
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Comparison of Variances - Heterogeneity through Center Effects

(/'117 h2, h3, h4, h5) = (17 .2, —]_, 30, 2) and different Pk

Large Small
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2 2
0 0
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-4 -
-8 -8
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[ pool 1 meta_ SW [ meta IVW [EE 1S_IVW 3 1S_SW (3 GD === True Tau
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Comparison of Variances - Heterogeneity through Center Effects

Pool

Meta-SW

(hy, ho, s, ha, hs) = (1,.2,—1,30,2) and different py

Large

Meta-IVW

1S-IVW

Small

W eb A4 Adjusted - - - True ATE
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Full Heterogeneity

Fully heterogeneous setting, realistic:
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Full Heterogeneity

Different (hk, pk, tik, k)

-5

-6
Pool Meta-SW Meta-IVW 18-IVW 1S-SW GD Adjusted — - — True ATE
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Full Heterogeneity

Different hy, px, prk, Xk

Large Small

1.0 1.0
0.5 05 B 777
| 7% 2
G
0.0 0.0
-05 -05 ——— ——
-1.0 -1.0
Pool Meta-SW Meta-IVW 18-IVW 15-sw I 6D /A Adjusted - — - True ATE
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Federated Causal Inferences:

challenges

Meta-Analysis

One-Shot FL Learning

GD FL

+ e Easy to implement

e Private and low communications: 1
round

o Shares only summary statistics:

e Locally estimated ATEs {74}
e Sample sizes {ny } or estimated
variances {V(#4)}

e Easy to implement

e Private and low communications: 2
rounds

e Shares summary statistics:

e Sample sizes {ny } or empirical
variance-covariance matrices
{2k} (can be costly when d is
large)

e Locally estimated ATEs with
One-Shot federated outcome

~1S

models {77}

e Flexible: (non-)parametric models,
estimate function 7(X)

o Robust to locally small sample sizes
(w)
(7 < d)
o Robust to different treatment schemes

e Private: using secure aggregation or
differential privacy

o Accurate: learn from the pool dataset as
if it was centralized

e Sensitive to imbalance in sample sizes

e No access to individual data: cannot
detect and qualify heterogeneity

e The aggregation with lowest variance

(IVW) yields a biased estimate under
heterogeneity in distributions

o Not designed for heterogeneous settings

o Harder to implement in practice

e Heavy computations: compute Vf(é)
at each round
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Local Full Rank
(Condition 1)?

Gather more data,
or add centers

Federated Full Rank
(Condition 2)?

Same distribution
of X across centers?

yes no

Center effects? Center effects? Centre effects?

ves
yes Use 1S-IVW
' (Figure 10)

Use Adjusted G]?k

Use Adjusted
%* GD, or Meta-
IVW (Figure 13)

Same treatment
probabilities?
(H 1L W)

Use Adjusted
GD, or Meta-SW
(Figure 4b) %

Use 1S-IVW.
s Use 1S-IVW
or MetafIVW (Figure 4a)
(Figure 8)

Figure 6: Decision Diagram for Practitionners. The sign % denotes scenarios where the DM estimator is biased.
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Extend this work to observational studies.

Quantify the bias and variances of the estimators in finite sample sizes settings.

e Non-parametric and non-linear approaches: federated random forests, neural networks,

etc.

Apply the Differential-Privacy framework to federated causal inferences.
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Scan my paper!

Thank you!
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